期刊文献+

体重负荷下正常胫股关节6个自由度的运动学 被引量:2

Kinematics of normal tibio-femoral joint on six degrees of freedom during weight-bearing flexion
原文传递
导出
摘要 [目的]定量分析正常胫股关节在体重负荷下6个自由度的运动学特征。[方法]双平面X线摄取10名健康志愿者一侧膝关节从伸直位到120°屈曲多角度下应力位的二维影像。螺旋CT扫描同一侧膝关节,并用获取的影像重建成三维模型。应用三维模型配准二维影像的方法测出股骨相对于胫骨全自由度的运动学数据。[结果]从伸直位到120°屈曲过程中,股骨后移(5.1±2.3)mm,外移(3.1±1.8)mm,远移(4.1±1.2)mm,外旋(17.3±6.9)°;股骨基本处于内翻(3.9±2.2)°;股骨外侧髁后移(12.6±3.4)mm,内侧髁前移(0.4±3.9)mm。[结论]正常膝关节在体重负荷下屈曲过程中,股骨相对于胫骨发生后移、外移、远移和外旋,内翻变化小;股骨内外侧髁的运动有差别。 [ Objective] To quantitatively analyze the kinematics of normal tibio- femoral joint on six degrees of freedom during weight - bearing flexion. [ Methods] The two - dimensional (2D) knee images of ten healthy subjects were captured by biplane radiography during a knee bending activity from extension to 120°. Next, the same knee was scanned by spiral CT, and the three - dimensional (3D) knee model was created using CT data. The 3D to 2D image matching technique was used to meas- ure the kinematics of the femur relative to the tibia. [ Results] On flexion from extension to 120°, the femur moved posteriorly by (5.1 ± 2. 3) mm, laterally by (3.1 ± 1.8) mm, distally by (4. 1 ± 1.2) mm on the tibia. The femur rotated externally by ( 17. 3 ±6. 9)°, and was almost in adduction by (3.9 ±2. 2)° with increasing flexion. In addition, the lateral femoral condyle moved backwards by ( 12. 6 ± 3.4) mm, while the medial condyle moved forwards by (0. 4 ± 3.9) mm during flexion. [ Conclusion] As the normal knee flexed during weight- bearing condition, the femur showed posterior, lateral and distal movement and external rotation relative to the tibia. And the femoral adduction altered shghtly. A difference was found between the movement of the medial and lateral femoral condyles.
出处 《中国矫形外科杂志》 CAS CSCD 北大核心 2013年第7期684-689,共6页 Orthopedic Journal of China
基金 国家自然科学基金(编号:31070837)
关键词 膝关节 运动学 双平面X线片 图像配准 knee, kinematics, biplane radiography, image registration
  • 相关文献

参考文献10

  • 1Brandsson S, Karlsson J, Eriksson Bloet al. Kinematics 'after tear in the anterior cruciate ligament: dynamic bilateral radiostereometric studies in 11 patients[ J ]. Acta Orthop Scand ,2001,72:372 - 378.
  • 2DeFrate LE, Papannagari R, Gill TJ, et al. The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency : an in vivo imaging analysis [ J ] . Am J Sports Med, 2006,34 : 1240 - 1246.
  • 3Johal P, Williams A, Wragg P, et al. Tibio - femoral movement in the living knee. A study of weight bearing and non - weight hearing knee kinematics using interventional MRI [ J ]. J Biomech,2005,38 :269 -276.
  • 4Haughom BD, Souza R, Schairer WW, et al. Evaluating rotational kinematics of the knee in ACL - ruptured and healthy patients using 3.0 Tesla magnetic resonance imaging [ J ]. Knee Surg Sports Trauma- tol Arthrosc ,2012,20:663 -670.
  • 5Leszko F, Hovinga KR, Lemer AL, et al. In vivo normal knee kine- matics: is ethnicity or gender an influencing factor[ J ]. Clin Orthop, 2011,469:95 - 106.
  • 6Myers CA, Torry MR, Peterson DS, et al. Measurements of tibiofem- oral kinematics during soft and stiff drop landings using biplane fluo- roscopy[ ]]. Am J Sports Med,2011,39 :1714 -1722.
  • 7McPherson A, Karrholm J, Pinskerova V, et al. Imaging knee posi- tion using MRI, RSA/CT and 3D digitisation[ J]. J Biomech, 2005, 38:263 - 268.
  • 8Freeman MA, Pinskerova V. The movement of the normal tibio - fem- oral joint [ J ]. J Biomech, 2005,38 : 197 - 208.
  • 9Anderst W, Zanel R, Bishop, J, et al. Validation of three - dimen- sional model -based tibio -femoral tracking during running[ J ]. Med Eng Phys ,2009,31 : 10 - 16.
  • 10杨滨,陈光兴,王志军,文亚名,杨柳,马华松,姜哲.基于磁共振图像构建髌股关节三维有限元模型[J].中国矫形外科杂志,2012,20(18):1688-1691. 被引量:6

二级参考文献13

  • 1Grelsamer RP, Dejour D, Gould J. The pathophysiology of patellofem- oral arthritis[ J ]. Orthop Clin North Am,2008,3:269 - 274.
  • 2Grood ES, Suntay WJ, Noyes FR, et al. Biomeehanics of the knee ex- tension exercise~ J]. J Bone Joint Surg Am, 1984,66:725 - 733.
  • 3Xie F, Yang L, Guo L, et al. A study on construction three - dimen- sional nonlinear finite element model and stress distribution analysis of anterior cruciate ligament [ J ]. J Biomech Eng, 2009,12 : 1207 - 1210.
  • 4KnechtS,LuechingerR,BoesigerP,eta1.MRI-basedinversefiniteelementapproachforthemechanicalassessmentofpatellararticularcartilagefromstaticcompressiontest[J].BiomedTech(Bed),2008,6:285-291.
  • 5GrayHA,TaddeiF,ZavatskyAB,eta1.Experimentalvalidationofafiniteelementmodelofahumancadaverictibia[J].JBiomechEng,2008.3:310-316.
  • 6Eckstein F, Glaser C. Measuring cartilage morphology with quantita- tive magnetic resonance imaging [ J ]. Semin Musculoskelet Radiol, 2004,4:329 - 353.
  • 7Mesfar W, Shirazi-Adl A. Biomechanics of the knee joint in flexion under various quadriceps forces [ J ]. Knee,2005,6:424 - 434.
  • 8Elias JJ, Cosgarea AJ. Computational modeling: an alternative ap- proach for investigating patellofemoral mechanics [ J ]. Sports Med Arthrosc ,2007,2 : 89 - 94.
  • 9陈光兴,杨柳,李恺,王文斌,杨滨,张焱,何锐,王志军,余宾宁,姜哲,张肖莎.基于中国可视人体数据集构建髋关节应力分析三维有限元模型[J].第三军医大学学报,2009,31(12):1193-1197. 被引量:11
  • 10黄若昆,谢鸣,勘武生,方真华.数字骨科学研究进展[J].中国矫形外科杂志,2010,18(12):1003-1005. 被引量:20

共引文献5

同被引文献12

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部