期刊文献+

深海声速剖面结构变化对会聚区偏移特性的影响分析 被引量:10

Annalysis on the influence of sound speed profile structure change in deep sea on the convergence zone deflection
下载PDF
导出
摘要 应用分层声速剖面模型(LSSPM)和BELLHOP高斯束声场计算模型,对深海声速剖面结构变化引起的会聚区偏移特性进行了分析。结果表明,声速值的整体变化对会聚区影响很小,而混合层、主跃层、深海等温层及声道轴的变化都会使会聚区位置出现不同程度的偏移。主跃层是上层海洋变化的主要体现,混合层变化对会聚区的影响也是通过改变主跃层的形态结构实现的,跃层强度的增大使会聚区向远离声源方向偏移。深海等温层的声速变化体现了深海水团的结构差异,与主跃层引起的会聚区偏移呈反相变化。声道轴附近的声速变化体现了不同类型中层水团侵入和混合的影响,所引起的会聚区偏移反映了声道轴上层与下层梯度变化的综合效应,声速最小值的增加使会聚区向远离声源方向偏移。 Based on Layered Sound Speed Profile Model(LSSPM) and BELLHOP Gaussian acoustic Model,the deflected characteristics of convergence zone(CZ) caused by sound speed profile(SSP) structure change was analyzed.The result showed that the primary effect on CZ came from the SSP grads instead of sound speed value.Different kinds of configurations of mixed layer,thermocline,deep sound channel,and deep isothermal layer induced CZ shifting.The thermocline represented the dominating oceanographic environment change,and the influence of mixed layer on CZ was made by the change of thermocline structure.The increasing of thermocline intensify made CZ shift away from source.The deep isothermal layer was mainly affected by deep water masses,which caused an inverse change of CZ compared to thermocline.In the scope of deep sound channel,the CZ deflection was caused by the change of upper layer and lower layer together under the conditions of water mass intruding and mixing,and the CZ was shifting away from source when the minimum sound speed increased.
机构地区 中国人民解放军
出处 《海洋通报》 CAS CSCD 北大核心 2013年第1期45-52,共8页 Marine Science Bulletin
关键词 声速剖面 会聚区 分层声速剖面模型(LSSPM) BELLHOP模型 sound speed profile(SSP) convergence zone(CZ) Layered Sound Speed Profile Model(LSSPM) BELLHOP Model
  • 相关文献

参考文献18

  • 1Brekhovskikh L M,Lysanov Yu P,2003. Fundamentals of ocean acous- tics. 3rd ed. New York: Springer-Verlag.
  • 2Bucker H P, 1994. A simple 3-D Gaussian beam sound propagation mod- el for shallow water. J Acoust Soc Am, 95 : 2437-2440.
  • 3Davis T M,Countryman K A,Carron M J, 1986. Tailored acoustic prod- ucts utilizing the NAVOCEANO GDEM (a generalized digital envi- ronmental model ). In proceedings, 36th Naval Symposium on Un- derwater Acoustics. San Diego : Naval Ocean Systems Center.
  • 4LeBlanc L R, Middleton F H, 1980. An underwater acoustic sound re-locity data model. J. Acoust Soc. Am, 67 : 2055-2062.
  • 5Munk W H, 1974. Sound channel in an exponentially stratified ocean, with application to SOFAR. J Acoust. Soc. Am, 55( 2 ) : 220-226.
  • 6Peng L H, Wang L, Qiu X F, et al, 2003. Modal wave number tomography for South China Sea front. China Ocean Engineering, 17 ( 2 ) : 289- 294.
  • 7Porter M B,Bucher H P, 1987. Gaussian beam tracing for computing o- cean acoustic fields. J. Acoust. Soc. Am, 82,1349-1359.
  • 8Teague W J,Can'on M J,Hogan P J, 1990. A comparison between the Generalized Digital Environmental Model and Levitus Climatologies. J. Geophys. Res, 95:7167-7183.
  • 9Urick R J, 1983. Principles of underwater sound. 3rd ed. New York : Mc- Graw-Hill.
  • 10Weinberg H, Keenan R E, 1996. Gaussian ray bundles for modeling high- frequency propagation loss under shallow-water conditions. J. A- coust. Soc. Am, 100:1421-1996.

二级参考文献55

  • 1张仁和,何怡,刘红.水平不变海洋声道中的WKBZ简正波方法[J].声学学报,1994,19(1):1-12. 被引量:46
  • 2孙琪田,张恩夫,韩军.西北太平洋深海声道的初步分析[J].海洋学报,1995,17(3):110-117. 被引量:7
  • 3何利,李整林,张仁和,李风华.东中国海声速剖面的经验正交函数表示与匹配场反演[J].自然科学进展,2006,16(3):351-355. 被引量:27
  • 4聂铁军.数值计算方法[M].西北工业大学出版社,1989..
  • 5刘钦圣.最小二乘问题计算方法[M].北京工业大学出版社,1984..
  • 6URICK R J.Principles of underwater sound (3rd edn)[M].New York:McOraw-Hill,1983:118-155.
  • 7BREKHOVSKIKH L M,LYSANOV Y P.Fundamentals of ocean acoustics (3rd edn)[M].New York:Springer-Verlag,2003:1-32.
  • 8ETTER P C.Underwater acoustic modeling-principles,techniques and applications[M].New York:Elsevier Applied Science,1991:64-155.
  • 9张仁和.水下声道中的反转点汇聚区(Ⅰ)简正波理论.声学学报,1980,1:28-42.
  • 10张仁和 孙庚辰 雷良颖等.负梯度深海中的反转点汇聚区.声学学报,1981,3:198-200.

共引文献76

同被引文献37

引证文献10

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部