期刊文献+

基于选择性集成径向基神经网络的来波方向估计

DOA estimation based on RBF neural network selective ensemble
下载PDF
导出
摘要 本文提出了一种基于选择性集成径向基函数神经网络(SE-RBFNN)的来波方向(DOA)估计方法,解决单个神经网络建模进行DOA估计精度低的问题。首先利用Bagging方法训练生成一定数量的RBFNN弱分类器,其估计精度低但泛化能力强;然后提出并运用等宽分箱—投票选择性集成方法剔除估计误差大的奇异值个体,优选部分RBFNN输出结果进行平均处理,从而获得了高精度的DOA估计。仿真结果表明了算法的有效性,相对单个RBFNN建模,构建的选择性集成模型能适应方向特征的变化,算法的来波估计精度显著提高。 A novel DOA estimation algorithm based on the equal-width-voting selective RBF neural network ensemble is proposed,which overcomes the low estimation precision and weak generalization ability flaws in the traditional single neural network estimation algorithm.Bagging algorithm is used to train amount individual RBFNN,which has low estimation precision but good generalization performance.Then the equal-width-voting selective ensemble algorithm is proposed to extract the appropriate number of ensemble members from the available individual networks,meanwhile the DOA estimation strong learner that has higher estimation precision and better generalization ability is constructed.Experimental results show that,compared with the single RBFNN estimation algorithm,the estimation precision and generalization ability is largely improved.
出处 《电路与系统学报》 北大核心 2013年第1期65-69,共5页 Journal of Circuits and Systems
基金 国家自然科学基金(60972161)
关键词 来波方向估计 相角特征 径向基神经网络 选择性神经网络集成 BAGGING算法 DOA estimation Phase angle figures RBF neural network selective neural network ensemble bagging algorithm
  • 相关文献

参考文献12

  • 1Wang M, Yang S Wu S. A RBFNN approach for DOA estimation of ultra wideband antenna array [J]. Neuro Computing, 2008, 71(4-6): 631-640.
  • 2S Vigneshwaran, Narasimhan Sundararajan, P Saratchandran. Direction of Arrival (DOA) Estimation Under Array Sensor Failures Using a Minimal Resourse Allocation Neural Network [J]. IEEE Transeatlon on Antennasand Propagation, 2007, 55(2): 334-343.
  • 3Guo Wo, Qiu TS Tang H. Performance of RBF neural networks for array processing in impulsive noise environment [J]. Digital Signal Processing, 2008, 18(2): 168-178.
  • 4安冬,王守觉.基于仿生模式识别和PCA/ICA的DOA估计方法[J].电子学报,2004,32(9):1448-1451. 被引量:14
  • 5严颂华,吴世才,吴雄斌.基于神经网络的高频地波雷达目标到达角估计[J].电子与信息学报,2008,30(2):339-342. 被引量:17
  • 6王婉苓,严颂华.基于时频分析的到达角估计方法比较[J].火力与指挥控制,2010,35(5):40-43. 被引量:1
  • 7Hansen L K S P. Neural Network Ensembles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 8Solice P, Krogh A. Learning with ensembles: How over-Fitting can be useful [M]. In: Advance in Neural Information Processing Systems, Denver, CO: MIT Press, Cambridge, MA: 1996. 190-196.
  • 9张旻,李鹏飞.基于互相关函数相角特征的RBF神经网络来波方位估计[J].电子与信息学报,2009,31(12):2926-2930. 被引量:8
  • 10Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and application to boosting [Z]. Barcelona, Spain: 1995.23-37.

二级参考文献42

共引文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部