期刊文献+

基于SIFT和PCA的图像感知哈希方法 被引量:7

A perceptual image hashing method via SIFT and PCA
下载PDF
导出
摘要 提出了一种新颖的基于尺度不变特征变换(SIFT)和主成分分析(PCA)的感知哈希方法。SIFT特征在通常的图像处理中具有很强的稳定性,并具有尺度和旋转不变性,通过对哈希生成两阶段框架的详细分析,SIFT算法用来提取图像的局部特征点,PCA用来对特征数据的信息压缩。每个特征点的PCA基的叠加构成图像哈希,在叠加中采用了伪随机处理,增强了算法安全性,图像之间的相似度通过哈希的归一化相关值来确定。实验分析表明该方法对各种复杂攻击,如图像旋转、光照变化、图像滤波等具有较好的稳健性,对比基于非负矩阵分解的图像哈希方法在图像识别应用中具有更好的性能。 This paper presents a novel perceptual hashing method based on scale invariant feature transform(SIFT) and principal component analysis(PCA).SIFT features are invariant to image scaling and rotation,and stable to common image processing.Through the detailed analysis of two-stage framework of generating hash,SIFT is used to capture the local features of image.PCA is used to compress features information.Final hash is generated by summing PCA basis of each key point.The method uses pesduo-randomly processing for enhancing security of the algorithm.The similarity of images is determined by hash normalization correlation.Test results indicate that the proposed method is robust to various types of attacks such as image rotation,illumination change and filtering,etc.It is superior in image identification compared with the image hashing using non-negative matrix factorization.
出处 《电路与系统学报》 北大核心 2013年第1期274-278,228,共6页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(61001201)
关键词 尺度不变特征变换 主成分分析 感知哈希 图像识别 SIFT PCA perceptual hashing image identification
  • 相关文献

参考文献4

二级参考文献48

  • 1王朔中,陈超,张新鹏.Undercover communication using image and text as disguise and countermeasures[J].Journal of Shanghai University(English Edition),2006,10(1):33-43. 被引量:3
  • 2秦川,王朔中,张新鹏.一种基于视觉特性的图像摘要算法[J].中国图象图形学报,2006,11(11):1678-1681. 被引量:17
  • 3王朔中,路兴,苏胜君,张新鹏.Image block feature vectors based on a singular-value information metric and color-texture description[J].Journal of Shanghai University(English Edition),2007,11(3):205-209. 被引量:4
  • 4Lin C Y and Chang S F. A robust image authentication system distinguishing JPEG compression from malicious manipulation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2001, 11(2): 153-168.
  • 5Venkatesan R, Koon S M, Jakubowski M H, and Moulin P. Robust image hashing[C]. IEEE Conference on Image Processing, Vancouver, Canada. September 2000: 664-666.
  • 6Xiang Shi-jun, Kim Hyoung-joong, and Huang Ji-wu, Histogram-based image hashing scheme robust against geometric deformations [C]. The 9th ACM Multimedia and Security Workshop, New York, USA. September 2007: 121-128.
  • 7Swaminathan A, Mao Y, and Wu M. Robust and secure image hashing [J]. IEEE Transactions on Information Forensics Security, 2006, 1(2): 215-230.
  • 8Kozat S S, Venkatesan R, and Mihcak M K. Robust perceptual image hashing via matrix invariants [C]. IEEE Conference on Image Processing, Singapore, 2004: 3443-3446.
  • 9Lee D D and Seung H S. Algorithms for non-negative matrix factorization [C]. Neural Information Processing Systems 13, Cambridge, MA: MIT Press, 2000: 556-562.
  • 10Kivanc M M. Robust and secure image Hashing via non-negative matrix factorizations [J]. IEEE Transactions on Information Forensics and Security, 2007, 2(3): 376-390.

共引文献118

同被引文献52

  • 1赵文清,姜波,王德文,宋雨.数字签名中哈希函数的分析与研究[J].计算机工程与应用,2004,40(32):155-157. 被引量:10
  • 2秦川,王朔中,张新鹏.一种基于视觉特性的图像摘要算法[J].中国图象图形学报,2006,11(11):1678-1681. 被引量:17
  • 3刘瑞祯,于仕琪.OpenCV教程一基础篇[M].北京:北京航空航天大学出版社,2007.
  • 4VENKATESAN R, KOON S M, JAKUBOWSKI M H,et al. Robust image hashing[ C ]//Proc. IEEE International Conference on Image Processing. Vancouver BC, Canada : IEEE Press ,2000:664-666.
  • 5LEFEBVRE F, MACQ B,LEGAT J D. RASH:Radon soft hash algo- rithm [ C]//Proc. European Signal Processing Conference. Tou- louse, France : IEEE Press ,2002:299-302.
  • 6FRIDR[CH J, GOIJAN M. Robust hash functions for digital water- marking[ C ]//Proc. IEEE International Conference on Infurmation Technology: Coding and Computing. LasVegas, Nevada, USA : IEEE Press, 2000 : 178 - 183.
  • 7HARR[S C, STEPHENS M. A combined corner and edge detector [C]//Proc. Alvey Vision Conference. [S.l. ] :IEEE Press,1988: 147-151.
  • 8LEE D D,SEUNG H S. Learning the parts of objects by nonnega- tire matrix factorization [ J ]. Nature, 1999 ( 21 ) :788-791.
  • 9LEE D D,SEUNG H S. Algorithms for non-negative matrix factori- zation[ C]//Proc. Advances in Neural Information Processing Sys- tems. [ S.l. ] :IEEE Press,2001:556-562.
  • 10MONGA V,MIHfAK M K. Robust and secure image hashing via non- negative matrix factorizations [ J]. IEEE Trans. Information Forensics and Security ,2007,2 ( 3 ) :376-390.

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部