期刊文献+

基于模糊利率和随机死亡率下的生存年金精算现值模型

Life Annuities Combination Models Based on a Model of Fuzzy Interest and Stochastic Mortality
下载PDF
导出
摘要 精算实务中保险给付大多以离散型为主.在模糊变量刻画的离散型利率条件下,利用具有非均值回复特性的带跳Feller过程描述连续型死亡率,通过精算学中的整值剩余寿命的定义方法,将其转化为离散型,从而建立离散型下生存年金精算现值模型,并给出了生存年金的趸缴纯保费的计算公式. In actuary exercising, insurance benefit mainly takes the discrete form. This paper based on fuzzy variable described by interest rate, employs continuous mortality rate characterised by non-means and reverting and then transsforms it into something discrete with the aid of the method of the definition of the curtate expectation of life. Therefore, established is the model of how the actuarial present value of discrete life annuity can be achieved as well as the calculating formula of equilibrium net premium.
出处 《淮北师范大学学报(自然科学版)》 CAS 2013年第1期1-5,共5页 Journal of Huaibei Normal University:Natural Sciences
基金 安徽省教育规划项目(JG10340) 安徽省教育厅教学研究项目(20101071) 安徽省教育厅自然科学项目(KJ2011B176) 宿州学院一般科研项目(2011yyb02) 宿州学院智能信息处理实验室开放课题(2010YKF11) 宿州学院教研项目(szxyjyxm201140)
关键词 模糊利率 带跳的Feller过程 生存年金 fuzzy interest rates Feller process with jumps life annuities
  • 相关文献

参考文献11

  • 1FRESS E W. Stochastick life contingencies with solvency considerations[J]. Transaction of Societies of Actuaries, 1990, 42:91 - 148.
  • 2DE SCHEPPER A, DE VYLDER F, GOOYAERTS M, et al. Interest randomness in annuities[J]. Insurance Mathematics and Economics, 1992, 11 (4): 271 - 281.
  • 3何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 4HABEMAN S. Stochastic investment returm and contribution rate risk in a defined benefit pension scheme[J]. Insurance: Mathematics and Economics, 2001, 19:127 - 139.
  • 5高井贵,赵明清.模糊利率下的寿险精算模型[J].系统工程学报,2010,25(5):603-608. 被引量:11
  • 6CAIMS A J G, BLAKE D, DOWD K. Princing death: frameworks for the valuation and securitization of mortality risk[J]. ASTIN Bulletin, 2006, 36(1 ): 79 - 120.
  • 7DAHL M. Stochastic mortality in life insurance: maker reserves and mortality-linked insurance contracts, insurance[J] Mathematics and Economics, 2004 (35) : 113 - 136.
  • 8LEE R D, CARTER L R. Modeling and forecastical U. S. mortality[J]. Journal of the American Statistical Association, 1992, 87 659 - 671.
  • 9尚勤,秦学志.随机死亡率和利率下退休年金的长寿风险分析[J].系统工程,2009,27(11):56-61. 被引量:13
  • 10LIU B, LIU Y K. Expected value of fuzzy variable and fuzzy value models[J]. IEEE Transactions on Fuzzy Systems, 2002, 10 (4): 445 - 450.

二级参考文献26

  • 1何文炯,蒋庆荣.随机利率下的增额寿险[J].高校应用数学学报(A辑),1998,13(2):145-152. 被引量:36
  • 2东明.随机利率下的联合寿险精算模型[J].系统工程,2006,24(4):68-72. 被引量:14
  • 3王丽燕,王丽娟,杨德礼.随机利率下的增额寿险(英文)[J].运筹学学报,2006,10(4):39-48. 被引量:4
  • 4Schepper A D, Goovaerts M. Some further results on annuities certain with random interest[J]. Insurance : Mathematics and Economics, 1992, 11 : 283-290.
  • 5Schepper A D, Goovaerts M, Kaas R. A recursive scheme for perpetuities with random positive interest rates[J]. Scandinavian Actuarial Journal, 1997, (1) : 1-10.
  • 6Olivieri A. Uncertainty in mortality projections: an actuarial perspective[J]. Insurance :Mathematics and Economics, 2001,29(2):231-245.
  • 7Cairns A J G, Blake D, Dowd K. Pricing death: frameworks for the valuation and securitization of mortality risk [J]. ASTIN Bulletin, 2006,36 ( 1 ): 79-120.
  • 8Lee R D,Carter L R. Modeling and forecasting U. S. mortality[J]. Journal of the American Statistical Association, 1992,87 : 659- 671.
  • 9Renshaw A E, Haberman S. Lee-Carter mortality forecasting with age-specific enhancement[J]. Insurance: Mathematics and Economics, 2003, 33:255-272.
  • 10Brouhns N, Denuit M, Van Keilegom I. Bootstrapping the Poisson log-bilinear model for mortality forecasting [J]. Scandinavian Actuarial Journal, 2005:212-224.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部