期刊文献+

求非线性发展方程行波解的(G′/G)展开法 被引量:6

(G′/G)-Expansion Method for Solving Traveling Wave Solutions of Nonlinear Evolution Equations
下载PDF
导出
摘要 利用齐次平衡法和(G′/G)展开法,借助于Matlab数学软件,获得了非线性KdV-mKdV方程及Zhiber-Shabat方程的精确行波解.结果表明,与其他方法相比,(G′/G)展开法求解非线性方程行波解更简明、有效. With the help of Matlab software,we employed balancing method and(G′/G)-expansion method to obtain exact traveling wave solutions of KdV-mKdV equation and Zhiber-Shabat equation.Compared with other methods,this method is simple and effective.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第2期183-186,共4页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:J1030101) 吉林大学符号计算与知识工程教育部重点实验室开放项目基金(批准号:09QNJJ002)
关键词 (G′ G)展开法 行波解 KDV-MKDV方程 ZHIBER-SHABAT方程 (G′/G)-expansion method traveling wave solutions KdV-mKdV equation Zhiber-Shabat equation
  • 相关文献

参考文献9

  • 1范恩贵,张鸿庆.齐次平衡法若干新的应用[J].数学物理学报(A辑),1999,19(3):286-292. 被引量:62
  • 2扎其劳,斯仁道尔吉.修正双曲函数法与非线性发展方程的精确解[J].内蒙古师范大学学报(自然科学汉文版),2007,36(1):15-21. 被引量:12
  • 3Malfliet W. Solitary Wave Solutions of Nonlinear Wave Equations [J]. Amer J Phys, 1992, 60(7) : 650-654.
  • 4Malfliet W, Hereman W. The Tanh Method: I. Exact Solutions of Nonlinear Evolutionsand Wave Equations [J]. PhysicaScripta, 1996, 54(6): 563-568.
  • 5GU Chao-hao. Soliton Theory and Its Application [M]. Berlin: Springer-Verlag, 1995.
  • 6ZHOU Yu bin, WANG Ming-liang, WANG Yue-ming. Periodic Wave Solutions to a Coupled KdV Equations with Variable Coefficients [J]. Phys Lett A, 2003, 308(1).. 31-36.
  • 7WANG Ming-liang, LI Xiang-zheng, ZHANG Jin-liang. The (G /G) Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics [J] Phys Lett A, 2008, 372(4): 417-423.
  • 8Conte R, Musette M. Link between Solitary Waves and Projective Riccati Equations [J]. Journal of Physics A: Mathematical and General, 1992, 25(21): 5609-5623.
  • 9TANG Ya-ning, XU Wei, SHEN Jian-wei, et al. Bifurcations of Traveling Wave Solutions for ZhibeShabat Equation[J].Nonlinear Analysis: Theory Methods Applications, 2007, 67(2): 648-656.

二级参考文献25

共引文献71

同被引文献38

  • 1Wazwaz A M. A New Fifth-Order Nonlinear Integrable Equations: Multiple Soliton Solutions [J]. Phys Scr,2011, 83(1): 015012.
  • 2Hirota R. Direct Methods in Soliton Theory [M]. Topics in Current Physics. New York: Springer, 1980.
  • 3Matveev V B,Sail M A. Darboux Transformation and Solitons [M]. Berlin* Springer-Verlag, 1991.
  • 4Kaur L, Gupta R K. On Symmetries and Exact Solutions of the Einstein-Maxwell Field Equations via theSymmetry Approach [J]. Phys Scr, 2013, 87(3) : 035003.
  • 5LOU Muren,ZHANG Yupeng, KONG Liangqian, et al. Becareful with the Equivalence of Different Ansatz ofImproved Tanh-Function Method for Nonlinear Models [J]. Applied Mathematics Letters,2015,48: 23-29.
  • 6MA Wenxiu, Abdeljabbar A,Asaad M G. Wronskian and Grammian Solutions to a (3 + 1 )-DimensionalGeneralized KP Equation [J]. Appl Math Comput, 2011,217(24) : 10016-10023.
  • 7MA Wenxiu, FAN Engui. Linear Superposition Principle Applying to Hirota Bilinear Equations [J]. ComputMath Appl, 2011, 61(4) : 950-959.
  • 8Wazwaz A M. A New Fi{th-Order Nonlinear Integrable Equations: Multiple Soliton Solutions [J]. Phys Scr, 2011, 83(1): 015012.
  • 9Matveev V B, Salle M A. Darboux Transformation and Solitons[M]. Berlin: Springer-Verlag, 1991.
  • 10Kaur L, Gupta R K. On Symmetries and Exact Solutions of the Einstein-Maxwell Field Equations via the Symmetry Approach [J]. Phys Scr, 2013, 87(3): 035003.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部