期刊文献+

基于依存特征的汉语框架语义角色自动标注 被引量:8

Automatic Labeling of Chinese Frame Semantic Roles Based on Dependency Features
下载PDF
导出
摘要 语义角色标注是浅层语义分析的一种实现方式。目前汉语框架语义角色自动标注一般被看作以词为基本标注单元的序列标注问题,而已有研究中仅在词、词性层面来选取特征,标注结果并不理想。该文利用树条件随机场模型,通过在词、词性层面特征的基础上依次加入不同类型的依存特征,研究依存特征对汉语框架语义角色标注的影响。实验设置了8类,共24种特征模板,结果显示,加入依序特征的最优模版使标注结果的F值提高近3%,特别是对较长框架语义角色的标注结果有较好的改善。 Semantic roles labeling is a kind of the shallow semantic analysis.Currently,Chinese frame semantic roles labeling is generally viewed as sequence labeling task based on the basic tagging unit of words.The current work is defected in only word or POS information considered.This paper studies the impact of the dependency features on the semantic roles labeling under the T-CRF model,integrating the dependency features among the words in the dependency syntax with the word and POS information.The experiment with 24 feature templates in 8 categories shows that the F-measure of the best templates is improved by 3%.Especially,the results on the long frame semantic roles are improved more significantly.
出处 《中文信息学报》 CSCD 北大核心 2013年第2期34-40,共7页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60970053) 国家语委"十二五"科研规划资助项目(YB125-19) 国家863高技术研究发展计划资助项目(2006AA01Z142) 山西省国际科技合作资助项目(2010081044) 山西省实验室开放基金资助项目(2009011059-4)
关键词 框架语义角色 依存特征 T-CRF模型 frame semantic roles dependency features T-CRF model
  • 相关文献

参考文献24

  • 1Palmer M, Gildea D, Kingbury P. The Proposition Bank: An Annotated Corpus of Semantic Roles [J]. Computational Linguistics, 2005, 31(1): 71-106.
  • 2Meyers A, Reeves R, Macleod C. The NomBank Project: An Interim Report[C]//HLT-NAACL Workshop: Frontiers in Corpus Annotation, 2004: 24-31.
  • 3Baker C F, Fillmore C J, Lowe J B. The Berkeley FrameNet Project [C]//Proceedings of the ACL, 1998: 86-90.
  • 4Gildea D, Jurafsky D. Automatic Labeling of Semantic Roles[J]. Computational Linguistics, 2002, 28(3): 245-288.
  • 5Chen J, Rambow O. Use of Deep Linguistic Features for the Recognition and Labeling of Semantic Arguments[C]//Proceedings of EMNLP, 200a.
  • 6Pradhan S, Hacioglu K, Krugler V, et al. Support vector learning for semantic argument classification [J]. Machine Learning, 2005, 60(1) :11-39.
  • 7Cohn T, Blunsom P. Semantic role labelling with tree conditional random fields[C]//Proceedings of CoNLL- 2005, 2005.
  • 8Surdeanu M, Mdrquez L, Carreras X, et al. Combina- tion Strategies for Semantic Role Labeling[J]. Journal of Artificial Intelligence Research, 2007, 29 : 105-151.
  • 9刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 10Baker CF, Ellsworth M, Erk K. SemEval 2007 Task 19: Frame Semantic Structure Extraction[C]//Proceedings of the 4th International Workshop on Semantic Evaluations, 2007: 99-104.

二级参考文献83

  • 1刘怀军,车万翔,刘挺.中文语义角色标注的特征工程[J].中文信息学报,2007,21(1):79-84. 被引量:39
  • 2刘挺,车万翔,李生.基于最大熵分类器的语义角色标注[J].软件学报,2007,18(3):565-573. 被引量:73
  • 3袁毓林.语义角色的精细等级及其在信息处理中的应用[J].中文信息学报,2007,21(4):10-20. 被引量:45
  • 4S.Narayanan and S.Harabagiu.Question answering based on semantic structures[C]//Proceedings of the 20th International Conference on Computational Linguistics,Geneva,Switzerland.2004.
  • 5M.Surdeanu,S.Harabagiu,J.Williams,and P.Aarseth.Using predicate-argument structures for information extraction[C]//Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics,Ann Arbor,Michigan.2003.
  • 6H.C.Boas.Bilingual FrameNet dictionaries for machine translation[C]//Proceedings of LREC 2002,Las Palmas,Spain.2002.
  • 7D.Gildea,D.Jurafsky.Automatic labeling of semantic roles[J].Computational Linguistics,2002,28 (3):245-288.
  • 8F.C.Baker,C.J.Fillmore,and J.B.Lowe.The Berkeley FrameNet project[C]//Proceedings of the 17th international.conference on Computational linguistics,Montreal,Canada.1998:86-90.
  • 9P.Kingsbury and M.Palmer.From TreeBank to PropBank[C]//Proceedings of the 3rd International Conference on Language Resources and Evaluation (LREC-2002),Las Palmas,Spain.2002.
  • 10Carreras X,M rques L.Introduction to the conll-2004 shared task:Semantic role labeling[C]//Proceedings of CoNLL-2004,Boston,MA,USA,2004:89-97.

共引文献189

同被引文献75

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部