期刊文献+

阴离子嵌入型炭正极材料的制备及电容性能 被引量:1

Preparation and Capacitive Performance of the Anion Intercalation Graphite Materials as Positive Electrode Materials
下载PDF
导出
摘要 通过循环伏安、恒流充放电和扫描电子显微镜等方法,对在1500和2800℃下进行热处理的针状焦炭(NC)的微观结构及作为正极材料的储能特性进行研究,考察了石墨化程度对材料储能性能的影响.2种热处理NC在有机电解液中,当电流密度为50 mA/g时,放电比容量分别为70.1和90.6 mA·h/g;当电流密度为5 A/g时,2种NC的放电比容量为55 mA·h/g左右;而商用活性炭当电流密度为50 mA/g时,比容量只有35.9 mA·h/g.2个NC在1 A/g的电流密度下循环1000次的保持率分别为95.7%和89.2%. Microstructure and energy storage performance of the needle coke heated at 1500 and 2800 ℃ were investigated by scanning electron micrograph( SEM), cyclic voltammetry(CV) and charge-discharge methods, and the influence of the degree of graphitization to the performance of graphite was studied. The specific discharge capacity of needle coke sintered at 1500 and 2800 ℃ were 70. 1 and 90.6 mA · h/g in organic electrolyte when the current density was controlled at 50 mA/g. The specific capacity was 55 mA · h/g when the current density was raised to 5 A/g. However, the specific capacity of commercialization active carbon was only 35.9 mA · h/g when the current density was controlled at 50 mA/g. The retention of the capacitance after 1000 charge-discharge cycles were 95.7% and 89.2%, respectively, when the current density was controlled at 1 A/g.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2013年第4期959-963,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:50902149)资助
关键词 电化学电容器 正极 石墨 嵌入 Electrochemical capacitor Positive electrode Graphite Insertion
  • 相关文献

参考文献7

二级参考文献60

  • 1SEKAI K, AZUMA H, OMARU A, et al. Lithium-ion rechargeable cells with LiCoO2 and carbon electrodes[J]. Power Sources, 1993, 43 (1/3):241-244.
  • 2OZAWA K. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoOJC system[J]. Solid State Ionics, 1994, 69 (1/3):212-221.
  • 3FEI C, IGOR V B,HYUNJOO B, et al.Evaluation of graphite materials as anodes for lithium-ion batteries [J]. Electrochem Soc, 2000, 147(10):3579-3583.
  • 4FUNABIKI A, INABA M, OGUMI Z, et al. Impedance study on the electrochemical lithium intercalation into natural graphite powder [J]. Electrochem Soc, 1998, 145(1 ): 172-178.
  • 5WINTER M, BESENHARD J O, SPAHR M E, et al. Insertion electrode materials for rechargeable lithium batteries[J]. Advanced Materials, 1998(10):725-763.
  • 6PELED E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems the solid electrolyte interphase model[J]. Electrochem Soc, 1979, 126(12): 2047-2051.
  • 7KANAMURA K, TAMURA H, SHIRAISHI S, et al. Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes[J]. Electroanal Chem, 1995,394(1/2):49-62.
  • 8AURBACH D, EIN-EL/Y, MARKOVSKY B, et al. The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries[J]. Electmchem Soc, 1995, 142(9):2882- 2890.
  • 9RICHARD M N, DAHN J R. Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte Ⅱ modeling the results and predicting differential scanning calorimeter curves[J]. Electrochem Soc, 1999, 146(6):2078-2084.
  • 10JEONG S K, INABA M, ABE T, et al. Surface film formation on graphite negative electrode in lithium-ion batteries:AFM study in an ethylene carbonate-based solution[J]. Electrochem Soc, 2001, 148(9) :A989-A993.

共引文献48

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部