期刊文献+

基于局部密度的用户概貌攻击检测算法 被引量:2

Local Density-based Algorithm for Detecting User Profile Attacks
下载PDF
导出
摘要 针对现有的用户概貌攻击检测算法在检测模糊攻击时精确度不高的问题,本文提出一种基于局部密度的用户概貌攻击检测算法.首先,利用LOF离群点检测算法为每个用户计算局部离群因子,得到用户的局部离群程度;然后,结合攻击用户对目标项目的评分与真实用户评分之间的差异,进一步确定目标项目及攻击目的,最终给出目标项目所对应的攻击概貌.实验结果表明,该算法无论是针对标准攻击还是模糊攻击,均具有较高的检测精度. The existing user profile attacks detection algorithms have lower precision when detecting obfuscated attacks. With this in mind, a local density-based algorithm to detect user profile attacks is proposed. We first calculate the local outlier factor for each user profile using LOF outlier detection algorithm and get the local deviation degree of the users. Then combined with the difference of the target item rated by attackers and genuine users, we can find the target item and attack purpose so as to identify the corresponding attack profiles. The experimental results show that the proposed algorithm has higher accuracy both in detecting standard attack and obfuscated attack.
作者 张付志 魏莎
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第4期850-855,共6页 Journal of Chinese Computer Systems
基金 河北省自然科学基金项目(F2011203219)资助 河北省高等学校科学技术研究重点项目(ZH2012028)资助
关键词 用户概貌攻击 攻击检测 模糊攻击 局部密度 局部离群因子 user profile attacks attack detection obfuscated attack local density local outlier factor
  • 相关文献

参考文献4

二级参考文献45

  • 1孙焕良,鲍玉斌,于戈,赵法信,王大玲.一种基于划分的孤立点检测算法[J].软件学报,2006,17(5):1009-1016. 被引量:16
  • 2MOBASHER B, BURKE R D, BHAUMIK R, et al. Toward trustworthy recommender systems: An analysis of attack models and algorithm robustness [ J]. ACM Transactions on Internet Technology, 2007, 7(4): 23-38.
  • 3CHIRITA P A, NEJDL W, ZAMFIR C. Preventing shilling attacks in online recommender systems [ C]//Proceedings of ACM International Workshop on Web Information and Data Management. New York: ACM Press, 2005:67-74.
  • 4BURKE R, MOBASHER B, WILLIAMS C, et al. Segment-based injection attaeks against collaborative filtering recommender systems [ C]//Proceedings of the Fifth IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2005: 577 - 580.
  • 5薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 6Breunig M M,Kriegel H P,Ng R T,et al.LOF:Identifying density-based local outliers[C]//Proc of ACM SIGMOD Conf.New York:ACM,2000:427-438.
  • 7Tang J,Chen Z,Fu A,et al.Enhancing effectiveness of outlier detections for low-density patterns[C]//Proc of Advances in Knowledge Discovery and Data Mining 6th Pacific Asia Conf.Berlin:Springer,2002:535-548.
  • 8Papadimitirou S,Kitagawa H,Gibbons P B,et al.LOCI:Fast outlier detection using the local correlation integral[C]//Proc of the 19th Int Conf on Data Engineering.Los Alamitos:IEEE Computer Society,2003:315-326.
  • 9Sanjay C,Pei Sun.SLOM:A new measure for local spatial outliers[J].Knowledge and Information Systems,2006,9(4):412-429.
  • 10Barnett V,Lewis T.Outliers in Statistical Data[M].New York:John Wiley and Sons,1994.

共引文献74

同被引文献17

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部