期刊文献+

基于OSP与NMF的光谱混合像元分解方法 被引量:3

The Spectral Unmixing Based on OSP and NMF
下载PDF
导出
摘要 非负矩阵分解(NMF)由于跟线性光谱混合模型具有很高的相似性,因此成为光谱混合像元分解中算法中的一个研究热点。为了避免NMF算法陷入局部最小带来的求解结果不确定性,提出用正交子空间投影(OSP)方法来估计高光谱图像端元的个数,同时简化了最小单形体体积约束的NMF算法中关于单形体体积的计算方法。实验结果表明利用该算法得到的地物丰度图与真实地物的分布状况相吻合。 Because of the high similarity to the linear spectral mixing model,non-negative matrix factorization(NMF)has become a hot research topic in spectral unmixing algorithms.In order to avoid uncertainty of the results due to the NMF algorithm dropping into a local minimum solution,this paper proposes orthogonal subspace projection(OSP)to estimate the number of endmembers,Meanwhile,the calculation method for the simplex volume is simplified.The experimental results show that the abundance map obtained from spectral unmixing can reflect the real distribution of surface minerals.
出处 《华东交通大学学报》 2013年第1期5-9,共5页 Journal of East China Jiaotong University
基金 江西省青年科学基金项目(20122BAB211018) 华东交通大学科学研究项目(11XX01) 毫米波国家重点实验室开放项目(K201326)
关键词 高光谱 光谱混合 正交子空间投影 非负矩阵分解 hyperspectral spectral mixing orthogonal subspace projection non-negative matrix factorization
  • 相关文献

参考文献9

  • 1钱乐祥,泮学芹,赵芊.中国高光谱成像遥感应用研究进展[J].国土资源遥感,2004,16(2):1-6. 被引量:33
  • 2KESHAVA N, MUSTRAD J F. Spectral unmixing [ J ]. IEEE Signal Processing Magazine, 2002,19 ( 1 ) : 44-57.
  • 3JIA S, QIAN Y. Constrained nonnegative matrix factorization for hyperspectral unmixing [J]. IEEE Trans.Geocsi.Remote sens., 2009,47 ( 1 ) : 161-173.
  • 4LIU X, XIA W, WANG B, ZHANG L. An approach based on constrained nonnegative matrix factorization to unmix hyper- spectral data J]. IEEE Trans.Geocsi.Remote sens. ,2011,49(2) :757-772.
  • 5郑轶,蔡体健.稀疏表示的人脸识别及其优化算法[J].华东交通大学学报,2012,29(1):10-14. 被引量:13
  • 6PAUCA V, PIPER J, PLEMMONS R. Nonnegative matrix factorization for spectral data analysis [ J ]. Linear Algebra and Ap- plications, 2006,416( 1 ) ~ 29-47.
  • 7陈伟,余旭初,王鹤.基于OSP的端元个数估计方法[J].计算机工程,2009,35(24):280-281. 被引量:1
  • 8MIAO L, QI H. Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix fac- torizationE J ]. IEEE Trans Geosci Remote Sens, 2007,45 (3) : 765-777.
  • 9SWAYZE G A. The hydrothermal and structural history of the cuprite mining district, southwestern Nevada: an integrated geological and geophysical approach[ D ]. Boulder: University of Colorado, 1997: 399.

二级参考文献73

共引文献44

同被引文献26

  • 1肖成勇,石博强,冯志鹏.基于EEMD和进化支持向量机的齿轮混合智能诊断方法研究[J].机械科学与技术,2015,34(1):86-89. 被引量:8
  • 2耿修瑞,张霞,陈正超,张兵,郑兰芬,童庆禧.一种基于空间连续性的高光谱图像分类方法[J].红外与毫米波学报,2004,23(4):299-302. 被引量:26
  • 3蒲瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2003:52-79.
  • 4XU JUN,HU BINGLIANG,FENG DAZHENG,et al.Analysis and Study of the Interlaced Encoding Pixels in Hadamard Transform Spectral Imager Based on DMD[J] .Optics and Lasers in Engineering,2012,50(3):458-464.
  • 5XU JUN,HU BINGLIANG,FENG DAZHENG,et al.The Correction of the Recovered Spectral Images in Hadamard Transform Spectral Imager Based on a Digital Micro-Mirror Device[J] .Applied Spectroscopy,2012,66(9):1044-1052.
  • 6GILLESPIE A R.Spectral Mixture Analysis of Multispectral Thermal Infrared Images[J] .Remote Sensing of Environment,1992,42(2):137-145.
  • 7FOODY G M,COX D P.Sub-pixel Land Cover Composition Estimation Using a Linear Mixture Model and Fuzzy Membership Functions[J] .Remote sensing,1994,15(3):619-631.
  • 8BOARDMAN J W.Geometric Mixture Analysis of Imaging Spectrometry Data[C] ∥Geoscience and Remote Sensing Symposium,IGARSS'94.Pasadena,1994:2369-2371.
  • 9KESHAVA N,MUSTARD J F.Spectral Unmixing[J] .IEEE Signal Processing Magazine,2002,19(1):44-57.
  • 10CHANG C I,PLAZA A.A Fast Iterative Algorithm for Implementation of Pixel Purity Index[J] .IEEE Geoscience and Remote Sensing Letters,2006,3(1):63-67.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部