期刊文献+

基于遥感图像信息特征的单调递增SSDA算法 被引量:3

The Monotonically Increasing SSDA Based on Features of Remote Sensing Image
下载PDF
导出
摘要 图像配准就是将不同时间、不同传感器或不同条件下对同一景物获取的两幅或多幅图像,进行比较找到该组图像中的共有景物,或是根据已知模式到另一幅图中寻找相应的模式。利用遥感图像进行目标监测需要进行图像配准处理。匹配算法如何达到高精度、高匹配正确率和实时性成为人们追求的目标。文章在传统匹配算法的基础上,提出两点改进:一是通过PCA-圆形SIFT算法提取图像特征角点,降低维数,优化计算;二是利用图像角点作为单调递增阈值序列SSDA算法匹配的基本像素点,利用遥感图像信息特征降低匹配计算量。最后进行实验仿真,结果表明,改进后的算法使得配准速度进一步提高,能够满足遥感图像配准实时性的要求。 Image registration is the process of matching two or more images derived from the same scene,at different time,by different sensors or at different views of angle.Target monitoring with remote sensing images requires pre-registration.How to effectively enhance the accuracy of image matching has become the key point.This paper proposes two improvements based on the traditional matching algorithms:firstly getting lower dimension and optimization calculation through PCA-SIFT algorithm;secondly reducing the amount of matching calculation according to remote sensing image features.The simulation results show that the proposed algorithm can reduce noise,greatly improving the speed of registration at the same time.
出处 《华东交通大学学报》 2013年第1期15-21,共7页 Journal of East China Jiaotong University
基金 国家自然科学基金项目(61261041)
关键词 图像配准 遥感图像 SSDA PCA-SIFT image registration remote sensing image SSDA(sequential similarity detection algorithms) PCA-SIFT(principal component analysis-scale-invariant feature transform)
  • 相关文献

参考文献18

  • 1LILLESANDTM,KIEFERRW.遥感与图像解译[M].4版.北京:电子工业出版社,2003:394.
  • 2MAITRE H, PINCIROLI M. Fraetal characterization of a hydrological basin using SAR satellite images [J]. IEEE Transac- tions on Geoseienee and Remote Sensing, 1999,37 ( 1 ) : 175-181.
  • 3雷琳,李智勇,粟毅.利用多特征融合匹配实现遥感图像多目标关联[J].信号处理,2009,25(3):454-459. 被引量:2
  • 4章毓晋.图像分割[M].北京:科学出版社,2001..
  • 5梁青,蒋先刚,沈涛.基于颜色互信息的病变细胞图像配准算法研究[J].华东交通大学学报,2011,28(2):50-54. 被引量:1
  • 6TTTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20( 11 ) : 1254-1258.
  • 7OLSON C F, HUTTENLOCHER D E Automatic target recognition by matching oriented edge pixels [J]. IEEE Transaction son Image Processing, 1997,6 ( 1 ) : 103-113.
  • 8TTrI L, KOCH C. Computational modeling of visual attention[ J ]. Nature Reviews Neuroscience, 2001,2 (3) : 194-203.
  • 9BARNEA D I, SIVERMAN H F. A class of algorithms for digital image registration [ J ]. IEEE Trans Computers, 1972, 21 (2) : 179-186.
  • 10HATABU A, MIYAZAKI T, KURODA I. Optimization of decision-timing for early termination of SSDA-bassed block matching[ C ]//International Conference on Multimedia and Expo Piscataway, NJ: IEEE, 2003 : 821-824.

二级参考文献34

共引文献622

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部