期刊文献+

基于最小二乘支持向量机的铁水含硅量软测量 被引量:3

Prediction of Blast Furnace Hot Metal Silicon Content Based on Least Square Support Vector Machine
下载PDF
导出
摘要 提出一种基于最小二乘支持向量机的铁水含硅量软测量模型,采用遗传算法确定模型参数的优化组合。用某钢管厂高炉的实际生产数据经过预处理后作为模型的训练和测试样本,进行软测量实验。实验结果表明,与神经网络模型和时间序列分析模型比较,所提出的软测量模型的软测量精度更高。 A prediction model based on least square support vector machine (LSSVM) is developed to model and prediction hot metal silicon content in a blast furnace,the optimal set of the LSSVM model parameters is selected by using genetic algorithm. Estimation experiment is conducted based on the data obtained from a blast furnace past operation records in a steel tube plant and being preprocessed in several different'ways.The experimental results show that the proposed meth- ods yielded more accurate predictions than neural network and time series analysis modeling methods.
出处 《工业控制计算机》 2013年第3期89-90,共2页 Industrial Control Computer
基金 湖南省科技厅科研资助项目(2011GK3188) 湖南省科技厅科研资助项目(2012FJ4332)
关键词 高炉 铁水含硅量 软测量 遗传算法 最小二乘支持向量机 blast furnace,hot metal silicon content,prediction,genetic algorithm,least squares support vector machine
  • 相关文献

参考文献5

  • 1Henrik Saxen.Blast furnace on-line simulation model[J]. Met- allurgicfal and Materials Transctions, 1990,21(5): 913-923.
  • 2M. Waller, H. Saxen.Application of nonlinear time series anal- ysis to the prediction of silicon content of pig iron [ J] . ISIJ International, 2002, 42(3):316-318.
  • 3邱东,仝彩霞,祁晓钰,郭亚平,朱里红,张俊明.基于神经网络的高炉铁水硅含量预报模型的研究[J].冶金分析,2009,29(2):49-52. 被引量:13
  • 4Vapnik V N, Statistical Learning Theory. New York: John Wi- ley, 1998.
  • 5Suykens J A K and Vandewalle J, Recurrent Least Squares Support Vector Machines. Transactions on Circuits and Sys- tems[J], 1.47, 2000:1109-1114.

二级参考文献3

共引文献12

同被引文献18

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部