期刊文献+

Solution of the Schrodinger equation for a particular form of Morse potential using the Laplace transform

原文传递
导出
摘要 In this paper, we have solved the Schrdinger equation for a particular kind of Morse potential and find its normalized eigenfunctions and eigenvalues, exactly. Our work is based on the Laplace transform technique which reduces the second-order differential equation to a first-order. In this paper, we have solved the Schrdinger equation for a particular kind of Morse potential and find its normalized eigenfunctions and eigenvalues, exactly. Our work is based on the Laplace transform technique which reduces the second-order differential equation to a first-order.
出处 《Chinese Physics C》 SCIE CAS CSCD 2013年第4期36-38,共3页 中国物理C(英文版)
  • 相关文献

参考文献24

  • 1Morse A P M. Phys. Rev.,1929,34: 57.
  • 2P?schl G,Teller E. Z. Physik,1933,83: 143.
  • 3Sage M L. Chem. Phys.,1978,35: 375.
  • 4Matsumoto A,Iwamoto K. J. Quant. Spectrosc. Radiat. Transfer,1993,50: 103.
  • 5Vasan V S,Cross R J. J. Chem. Phys.,1983,78: 3869.
  • 6Tipping R H,Ogilvie J F. J. Chem. Phys.,1983,79: 2537.
  • 7DONG S H,TANG Y,SUN G H. Phys. Lett. A,2003,320: 145.
  • 8Klauder J R,Skagerstam B S. Coherent States,Applications in Physics and Mathematical Physics. Singapore; Word scientific,1985.
  • 9Twareque Ali S,Antoine J P,Gazeau J P. Coherent States,Wavelets and Their Generalization,Berlin: Springer,2000.
  • 10Gazeau J P. Coherent States in Quantum Physics. WILEY-VCH Verlag GmbH and Co. KGaA,Weinheim,2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部