期刊文献+

基于D-S理论的多特征融合人体检测算法

Multi-feature-fusion Human Detection Algorithm Based on the Theory of D-S
下载PDF
导出
摘要 提出一种基于D-S证据理论的多特征融合人体检测算法。该方法首先使用harr-like特征方法和HOG特征方法提取人体特征,然后利用后验概率密度函数,估计出两个基本概率分配函数,最后应用D-S证据理论中的合成法则,将两个特征的分类器进行融合决策。实验结果表明,本文提出的算法在Inria数据集上取得了较好的效果,满足了一般工程应用的要求。 This paper puts forward a multi -feature human detection algorithm based on the theory of D -S. This method firstly extract the characteristics of human body by using hart - like characteristics method and HOG characteristics method, then estimates two basic probabil- ity assignment function by use of the posterior probability density function, finally by combina- tion rule in evidence theory of the application of D-S makes a fusion decision towards the classi- fier with two features, proposed one kind based on the D-S evidence theory fusion of multiple features of human detection algorithm. The method firstly uses the Harr-like method and HOG method to extract characteristic features characteristic of the human body, and then use esti- mated two, finally the application of D-S in, two feature classifier fusion decision. The experi- mental results show that the proposed algorithm in this paper obtains the better result in Inria data sets and meets the general requirements of Engineering application.
出处 《吉林工程技术师范学院学报》 2012年第8期73-76,共4页 Journal of Jilin Engineering Normal University
关键词 D—S证据理论 Harr—Like特征 HOG特征 分类器 特征融合 D-S evidence theory Harr-Like characteristics HOG characteristics classifier feature fusion
  • 相关文献

参考文献13

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2J. K. Aggarwal, Q. Cai. Human Motion Analysis: A Review[ J ], Computer Vision and Image Understanding, 1999, 73(3).
  • 3Liang Zhao. Dressed Human Modeling, Detection and Parts Localization[D]. Carnegie Mellon University, 2001.
  • 4D. M. Gavrilla. The Visual Analysis of Human Movement: A Survey [ J ]. Computer Vision and Image Understanding,1999, 73(1).
  • 5MacKenna, Y. Raja, S. Gong. Tracking Color Objects using Adaptive Mixture Models[ J ]. Image and Vision Computing, 1999.
  • 6Papageorgiouh C, Poggio T. A Trainable System for Object Detection [ J ]. International Journal of Computer Vision,2000, 38(1).
  • 7Viola P, Jones M. J. Snow D. Detecting Pedestrians Using Patterns of Motion and Appearance [ C ] //2003 Proceedings of the IEEE International Conference on Computer Vision. Nice, France: IEEE Computer Society, 2003.
  • 8Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection [ C ] //Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2005.
  • 9http ://pascal. inrialpes. fr/data/human.
  • 10Dempster, A. P. Upper and lower probabilities induced by a multivalued mapping [ J ]. Annals of Mathematical Statistics, 1967, 38(2).

二级参考文献117

  • 1陈卫,周晓,叶菲,谭营.AdaBoost-NN在雷达信号识别中的应用[J].电子对抗技术,2005,20(1):29-33. 被引量:4
  • 2武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 3朱谊强,张洪才,程咏梅,杨涛,赵春晖.基于Adaboost算法的实时行人检测系统[J].计算机测量与控制,2006,14(11):1462-1465. 被引量:13
  • 4李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 5[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 6[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 7[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 8[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 9[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 10[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252

共引文献297

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部