期刊文献+

结构化道路车道标线识别算法研究 被引量:3

Structured Road Lane Marking Identification Algorithm
下载PDF
导出
摘要 针对传统Hough变换算法在无人车结构化道路车道标线识别中出现的中间间断车道标线提取不精准、不完整、有用车道标线信息丢失等问题,提出基于感兴趣附近区域的Hough变换车道标线识别算法.运用传统Hough变换对预处理得到的二值图像进行图像部分分块的车道标线提取,在已提取的车道标线周围划定感兴趣附近区域,找出感兴趣附近区域内的像素与车道标线的辅助度关系,通过辅助度计算累计单元的最大值,得到车道标线的参数.对无人车实时采集的图片进行实验,实验结果表明,该算法在直道、弯道情况下平均处理一帧图片耗时分别为80.42ms、92.22ms,具有很好的实时性,且该算法可以有效提取结构化道路的车道标线. In order to solve the problems in the traditional Hough transform algorithm for UGV structured road lane marking identification, such as the inaccurate and incomplete extraction of the middle of the lane marking and the loss of useful lane information, a Hough transform lane marking identification algorithm based on nearby region of interest(ROD is proposed. Delimiting RIO nearby the lane marks was extracted by the traditional Hough transform from the part of binary preprocessingimage, finding out the relation of the auxiliary degree between the pixel in the ROI and the lane marking. The maximum of the accumulative unit is calculated through this auxiliary degree, with the parameters of lane marks obtaired. The new algorithm was tested by using the real-time captured images. Experimental result shows that 80. 42 ms and 92. 22 ms on average are requined respectively by the algorithm to process one image in the case of straight road and bending road. The algorithm is of good real time and the algorithm can extract structured road lane marking effectively.
出处 《西安工业大学学报》 CAS 2013年第1期14-18,共5页 Journal of Xi’an Technological University
基金 陕西省教育厅自然科学专项(12JK0502) 教育部留学回国人员科研计划项目(2011CY185)
关键词 车道标线识别 传统Hough变换 感兴趣附近区域 辅助度 lane marking identification traditional hough transform nearby region of interest auxiliary degree relation
  • 相关文献

参考文献10

  • 1管欣,贾鑫,高振海.基于道路图像对比度-区域均匀性图分析的自适应阈值算法[J].吉林大学学报(工学版),2008,38(4):758-763. 被引量:11
  • 2刘家海,白洪欢,黄微凹.基于彩色边缘和边缘信息融合的道路分割算法[J].浙江大学学报:工学版,2008,40(1):30.
  • 3TURK M A, MORGENTHALER D G, GREMBAN K D, et al. VITS.. A Vision System for Autonomous Land Vehicle Navigation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 10 (3):342.
  • 4徐友春,王荣本,李克强,赵玉凡.一种基于直线模型的道路识别算法研究[J].中国图象图形学报(A辑),2004,9(7):858-864. 被引量:42
  • 5邓剑文,安向京,贺汉根.基于道路结构特征的自主车视觉导航[J].吉林大学学报(信息科学版),2004,22(4):415-419. 被引量:14
  • 6POMERLEAU D A. Progress in Network-Based Vision for Autonrnous Robot Driving[C]//Proceedings of the IEEE Intelligent Vehicles '92 Symposium, 2008, 5 (2):391.
  • 7KLUGE K, LAKSHMANAN S. A Deformable Template Approach to Lane Detection[C]//Proceedings of IEEE Intelligent Vehicle 95. Detroit, MI, USA, 2005,5 (4) : 59.
  • 8SHARMA U K, DAVIS L S. Road Boundary Detection in Range Imagery for an Autonomous Robot[J]. IEEE Transactions on Robotics and Automation, 2009, 4 (5):515.
  • 9李旭,张为公,卞晓东.机器视觉在车道标志线实时检测中的应用[J].测控技术,2005,24(1):19-22. 被引量:4
  • 10YU B,JAIN A K. Lane Boundary Detection Using a Muhiresolution Hough Transform[J]. Proceedings of International Conference on Image Processing, 2010,2(1) :748.

二级参考文献26

  • 1Morcllas V, Morrix T, Alexander L, et al. Preview Based Control of a Tractor Trailer Using DGPS for Previewing Road Departure Accidents[A]. IEEE Conference on Intelligent Transportation System[C]. 1997:797-805.
  • 2Schneiderman H, Nashman M. A discriminating feature tracker for vision-based autonomous driving[J]. IEEE transactions on robotics and automation, 1994, 10(6):769-775.
  • 3Suzuki A, Yasui N, Nakano N, et al. Lane recognition system for guiding of autonomous vehicle [A]. Proceedings of the Intelligent Vehicles Symposium[C]. 1992.196-201.
  • 4Alberto Broggi, Massimo Bertozzi, Alessandra Fascioli. Architectural issues on vision-based automatic vehicle guidance:the experience of the ARGO project[J].Real-Time Imaging,2000, 6 (4):313-324.
  • 5BERTOZZI M, BROGGI A, FASCIOLI A. Stereo inverse perspective mapping: Theory and applications [J]. Image and Vision Computing, 1998, 16 (8): 585-590.
  • 6BERTOZZI M, BROGGI A. GOLD: A parallel real-time stereo vision system for generic obstacle and lane detection[J]. IEEE Transactions on Image Processing, 1998, 7 (1): 62-81.
  • 7BROGGI A. The ARGO autonomous vehicle's vision and control systems[J]. Intenational Journal of Intelligent Control and System, 1999, 3 (4): 409-441.
  • 8DICDSMANN E D, MYSLIWETZ B D. Recursive 3D road and relative ego-state recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (2): 199-213.
  • 9POMEREAU D A. RALPH: Rapidly adapting lateral position handler [C] // In: Procedings of IEEE Intelligent Vehicles '95, Detroit, MI, USA: [s. n.], 1995: 506-511.
  • 10GREGOR R, LUTZELER M, PELLDOFER M, SIEDERSBERG K H, DICKSMANN E D. EMS-Vision: A perceptual for autonomous vehicles [C]//In Procedings of IEEE Intelligent Vehicles' 2000, Dearborn, MI, USA: [s. n. ], 2000:52-57.

共引文献66

同被引文献25

  • 1王晓云,王永忠.基于线性双曲线模型的车道线检测算法[J].杭州电子科技大学学报(自然科学版),2010,30(6):64-67. 被引量:8
  • 2章先阵,初秀民,毛喆,严新平.道路标线图像采集中的几何畸变校正研究[J].交通与计算机,2005,23(6):58-61. 被引量:4
  • 3Wang Y, Teoh E, Dinggang Shen. Lane detection and tracking using B-Snake[J]. Image and Vision Compu- ting,2004,22(4) :269-280.
  • 4Lee J,Yi U . A lane-departure identification based on LBPE, Hough transform, and linear regression [J]. Computer Vision and Image Understanding, 2005,99 (3) :359-383.
  • 5Wang J,Lin C,Chen S. Applying fuzzy method to vision-based lane detection and departure warning sys- tem[J]. Expert Systems with Applications, 2010,37 (1):113-126.
  • 6Donoho D L, Huo X M. Beamlets pyramids: A new form of multi-resolution analysis, suited for extracting lines,curves, and objects from very noise image data [C]//SPIE. Proceedings of SPIE Vavelet Applications in Signal and Image Processing VIII. Sandiego: SHE, 2000,4119(1) :434-444.
  • 7Donoho D,Levi O, Starch J, et al. Multi-scale geometric analysis for 3D catalogues,astronomical data analysis Ⅱ [C]//SPIE. Proceeding of SHE, Astronomical Data Analysis Ⅱ. Hawaii : SPIE, 2002 : 101-111.
  • 8Huo X. Sparse image representation via combined transforms[D]. Stanford : Stanford University, 1999.
  • 9屈庆春,彭玉华,杨明强.基于Beamlet变换的线特征检测[J].中国图象图形学报,2007,12(3):500-504. 被引量:12
  • 10OTHMAN O K,IMRAN M K,ABDULHAKAM A M. A hyperbola-Pair Based Lane Detection System for Vehicle Guidance[A].San Francisco:IEEE,2010.20.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部