摘要
给出了一类 p(x) -
The singularity of pos it ive radial solutions is studied in a neighborhood of zero for p(x) Laplacia n equations-Δ p(x)u=-div(|u| p(x)-2u)=f(x,u),on the condition that p(x) and f(x,u) are radial about x, where f( x,u)∈C([0,R]×R +,R +) . It is proved that the positive radial solutions o f this equation are singular or regular if the growth speed of f(x,·) is le ss than N(p(x)-1)N-p(x) when u→∞. In additi on, the existence of singular solutions is obtained.
出处
《兰州大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2000年第3期5-11,共7页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金!(199710 37)
甘肃省自然科学基金!(ZS991- A2 5- 0 0 5- Z)资助项目