期刊文献+

基于BP神经网络的交通信号数字指示灯识别 被引量:3

Identification of Digital Traffic Signals Indicator Based on BP Neural Network
下载PDF
导出
摘要 交通信号数字指示灯识别是根据数字指示灯的特征分析图像内容,找出数字指示灯目标并加以分类识别的过程,包括预处理、定位、分割以及识别等过程。本文采用基于颜色-形状特征的目标检测算法和基于BP神经网络的识别算法,设计一种较为简单、准确的数字信号灯的识别方法。仿真实验表明,本算法具有较高的准确率和执行效率。 Identification of digital traffic signals indicator is the process of analyzing image content based on the characteristics of digital indicator to identify, classify and recognize digital indicator target, including pretreatment, positioning, segmentation, i- dentification and etc. This paper designs a more simple, accurate digital signal light recognition method by using the target detec- tion algorithm based on the color-shape characteristics and the recognition algorithm based on BP neural network. Simulation ex- periments results show that this method is of higher accuracy rate and execution efficiency.
作者 任勇 彭静玉
出处 《计算机与现代化》 2013年第4期77-80,共4页 Computer and Modernization
基金 江苏省自然科学基金资助项目(BK2011375)
关键词 BP神经网络 信号灯识别 数字指示灯 BP neural network semaphores recognition digital indicator
  • 相关文献

参考文献20

  • 1Kumar P, Ranganath S,Huang W, et al. Framework forreal-time behavior interpretation from traffic video [ J ].IEEE Transactions on Intelligent Transportation Systems,2005,6(l):43-53.
  • 2段瑞玲,李庆祥,李玉和.图像边缘检测方法研究综述[J].光学技术,2005,31(3):415-419. 被引量:373
  • 3Zhou J, Gao D, Zhang D. Moving vehicle detection for au-tomatic traffic monitoring [ J ]. IEEE Transactions on Ve-hicular Technology, 2007,56( 1) :51-59.
  • 4Zhang H, Fritts J E, Goldman S A. Image segmentation e-valuation : A survey of unsupervised methods [ J ]. Comput-er Vision and Image Understanding, 2008,110(2) :260-280.
  • 5管海燕,郭建星.常用图像边缘检测算子定位精度对比研究[J].测绘与空间地理信息,2005,28(1):20-24. 被引量:15
  • 6Navon E, Miller 0,Averbuch A. Color image segmenta-tion based on adaptive local thresholds[J]. Image and Vi-sion Computing, 2005 ,23(1) :69-85.
  • 7杨斐,王坤明,马欣,朱双东.应用BP神经网络分类器识别交通标志[J].计算机工程,2003,29(10):120-121. 被引量:24
  • 8Zhu F. A video-based traffic congestion monitoring systemusing adaptive background subtraction [ C ]// Proceedingsof the 2nd International Symposium on Electronic Com-merce and Security. 2009:73-77.
  • 9Barash D. Nonlinear diffusion filtering on extended neigh-borhood [J ]. Applied Numerical Mathematics,2005,52(1):1-11.
  • 10Boles W W, Kanefsky M, Simaan M. A reduced edge dis-tortion median filtering algorithm for binary images [ J ].Signal Processing, 1990,21 (1) ;37-47.

二级参考文献57

  • 1郭烈,王荣本,顾柏园,余天洪.世界智能车辆行人检测技术综述[J].公路交通科技,2005,22(11):133-137. 被引量:18
  • 2贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 3郑君里 杨行峻.人工神经网络[M].北京:高等教育出版社,1992..
  • 4Chen Y P,Fu K S. A decision function method for boundary detection [ J ]. Compute graphics and Image processing, 1974,3 ( 2 ).
  • 5S M Smith,J M Brady. SUSAN - a new approach to low level image processing[ J ]. Journal of Computer Vision, 1997,23 ( 1 ) :45 - 78.
  • 6Marcelo M. Perez, Tim J. Dennins. An Adaptive Implementation of the SUSAN Method for Image Edge and Feature Detection [ A ].IEEE Image Processing, 1997, Proceedings, International Conference, 26-29 Oct[C]. 1997 Pages: 394-397 vol. 2
  • 7章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 8章毓晋.图像分割[M].北京:科学出版社,2001..
  • 9Pratt W K. Digital Image Processing[M]. New York: Wiley,1991.
  • 10Viola P, Jones M, Snow D. Detecting pedestrians using patterns of motion and appearance [ A ]. Proceedings of International Conference on Computer Vision[ C]. Washington DC, USA:IEEE, 2003.734 - 741.

共引文献452

同被引文献20

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部