期刊文献+

张量空间中的真正锥 被引量:2

下载PDF
导出
摘要 本文指出了文献 [1 ]在张量空间中定义的两种锥是一致的 ,证明了它们是张量空间中的最小真正锥 ,并可用来表示有限维实空间中由锥不变算子所组成的锥 ,因而可用来研究锥不变算子 .
作者 牛少彰
出处 《工科数学》 2000年第1期45-47,共3页 Journal of Mathematics For Technology
  • 相关文献

参考文献3

  • 1Barker G P. Monotone norms and tensor products[J]. Linear and Muttillnear Algebra, 1976,4:191-199.
  • 2Tam B S. Some results of potyhedral cones and simplicial eones[J]. Linear and Muttitinear Algebra, 1977.4:281-284.
  • 3Mcmullen P. and Shephard G C. Convex Polytops and the Upper Bound conjecture[M]. Cambridge University Press, London, 1971.

同被引文献9

  • 1Barker G P. Monotone Norms and Tensor Products[J]. Linear and Multilinear Algebra, 1976, 4:191-199.
  • 2Tam B S. Some Results of Polyhedral Cones and Simplicial Cones[J]. Linear and Multilinear Algebra, 1977,4:281 - 284.
  • 3Mcmullen P, Shephard G C. Convex Polytops and the Upper Bound Conjecture[M]. Cambridge University Press London, 1971.
  • 4Barker G P, Loewy R. The Structure of Cones of Matrices[J]. Linear Algebra and Its Application, 1975, 12:87-94.
  • 5Loewy R, Schneider H. Indecomposable Cones[J]. Linear Algebra and Its Application, 1975, 11:235-245.
  • 6Barker G P, Loewy R. The Structure of Cones of Matrices[J]. Linear Algebra and Its Application, 1975, 12:87-94.
  • 7Barker G P. Monotone Norms and Tensor Products[J]. Linear and Multilinear Algebra, 1976, 4:191-199.
  • 8Tam B S. Some Results of Polyhedral Cones and Simplicial Cones[J]. Linear and Multilinear Algebra, 1977, 4:281-284.
  • 9Mcmullen P, Shephard G C. Convex Polytops and the Upper Bound Conjecture[M]. Cambridge University Press London, 1971.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部