摘要
本文指出了文献 [1 ]在张量空间中定义的两种锥是一致的 ,证明了它们是张量空间中的最小真正锥 ,并可用来表示有限维实空间中由锥不变算子所组成的锥 ,因而可用来研究锥不变算子 .
出处
《工科数学》
2000年第1期45-47,共3页
Journal of Mathematics For Technology
参考文献3
-
1Barker G P. Monotone norms and tensor products[J]. Linear and Muttillnear Algebra, 1976,4:191-199.
-
2Tam B S. Some results of potyhedral cones and simplicial eones[J]. Linear and Muttitinear Algebra, 1977.4:281-284.
-
3Mcmullen P. and Shephard G C. Convex Polytops and the Upper Bound conjecture[M]. Cambridge University Press, London, 1971.
同被引文献9
-
1Barker G P. Monotone Norms and Tensor Products[J]. Linear and Multilinear Algebra, 1976, 4:191-199.
-
2Tam B S. Some Results of Polyhedral Cones and Simplicial Cones[J]. Linear and Multilinear Algebra, 1977,4:281 - 284.
-
3Mcmullen P, Shephard G C. Convex Polytops and the Upper Bound Conjecture[M]. Cambridge University Press London, 1971.
-
4Barker G P, Loewy R. The Structure of Cones of Matrices[J]. Linear Algebra and Its Application, 1975, 12:87-94.
-
5Loewy R, Schneider H. Indecomposable Cones[J]. Linear Algebra and Its Application, 1975, 11:235-245.
-
6Barker G P, Loewy R. The Structure of Cones of Matrices[J]. Linear Algebra and Its Application, 1975, 12:87-94.
-
7Barker G P. Monotone Norms and Tensor Products[J]. Linear and Multilinear Algebra, 1976, 4:191-199.
-
8Tam B S. Some Results of Polyhedral Cones and Simplicial Cones[J]. Linear and Multilinear Algebra, 1977, 4:281-284.
-
9Mcmullen P, Shephard G C. Convex Polytops and the Upper Bound Conjecture[M]. Cambridge University Press London, 1971.
-
1牛少彰.张量空间中的多面体锥[J].工科数学,2001,17(1):50-52.
-
2王景河.矩阵方程解的唯一性[J].哈尔滨师范大学自然科学学报,1997,13(2):37-38.
-
3谭国律.张量空间中可合元素的一个注记[J].数学的实践与认识,1990,20(4):61-62.
-
4牛少彰.张量空间中锥的可分解性[J].工科数学,2001,17(5):27-30.
-
5郭定辉.Heisenberg群上一类左不变算子的特征值问题[J].北京师范大学学报(自然科学版),1992,28(3):287-292. 被引量:3
-
6郑兵.紧李群上的三角多项式不变算子[J].西北师范大学学报(自然科学版),1991,27(3):1-5.
-
7王伯英.关于张量空间上的非负定算子[J].北京师范大学学报(自然科学版),1987,23(2):9-12.
-
8于树模.从L^p(G,A)到L^p(G,X)的L^1(G,A)-模同态和不变算子(1<p∞)[J].数学年刊(A辑),1990,11(6):691-698.
-
9王伯英,吴俊.张量空间对称化算子的指标[J].数学学报(中文版),1990,33(2):145-149.
-
10张谭祥.关于张量空间的对称化算子的矩阵表示[J].华南师范大学学报(自然科学版),1990,22(2):57-62.