期刊文献+

单频网CP-OFDM信号外辐射源雷达的分载波杂波抑制方法(英文) 被引量:6

Subcarrier-based Processing for Clutter Rejection in CP-OFDM Signal-based Passive Radar Using SFN Configuration
下载PDF
导出
摘要 杂波抑制是外辐射源雷达目标检测的一项关键技术。尤其在单频网配置下,多径杂波和地杂波相对于单发射站情况成倍增长,造成其在空域和时域均具更大扩展,使得传统杂波处理方法面临新的困难。该文研究了一种新的分载波杂波抑制方法,该方法针对带循环前缀的正交频分复用信号(CP-OFDM)所设计,能较好克服单频网配置给杂波抑制引入的新问题。文章首先阐述了该方法的原理,接着展示了其有别于传统方法的特性,包括分载波空域处理的多普勒响应和全新的主瓣杂波问题,然后从理论上研究了该方法的鲁棒性,仿真和实测处理结果验证了该文方法的有效性。 Clutter rejection is a key technique used by passive radars for target detection. Especially when using Single Frequency Network (SFN) configuration, the multipath clutter and ground clutter increase several times more than during a single illuminator situation, which means that the clutter extends in both the spatial and temporal dimensions. The high amount of clutter occupies numerous degrees of freedom when conventional spatial or temporal processing is used, leading to a large array requirement, a huge computational cost, or even a complete failure. This paper investigates a novel subcarrier-based processing technique that is tailored for Orthogonal Frequency Division Multiplex (OFDM) modulation with a Cyclic Prefix (CP-OFDM) to avoid the above- mentioned predicament. The algorithm principle is initially illustrated and followed by a discussion about the unique characteristics of Subcarrier-based Spatial Adaptive Processing (SSAP), which include the Doppler response and its unusual main-lobe clutter case. Then, the robustness is researched by evaluating the performance under relaxed basic assumptions. The conclusions are demonstrated by conducting test using simulated and real datasets.
出处 《雷达学报(中英文)》 CSCD 2013年第1期1-13,共13页 Journal of Radars
基金 Supported by the National Natural Science Foundation of China(No. 41074116, 41106156, 61271400, and 60971101)
关键词 外辐射源雷达 单频网 CP OFDM调制 分载波处理 Passive radar Single Frequency Network (SFN) Cyclic Prefix OFDM (CP-OFDM) modulation Subcarrier-based processing
  • 相关文献

参考文献23

  • 1Griffiths H D and Long N R W. Television bmqed bistatic radar[J]. IEE Proceedings-F, Communications, Radar and Signal Processing, 1986 133(7): 649-657.
  • 2Howland P E. Target tracking using television-based bistatic radar[J]. IEE Proceedings-Radar Sonar and Navigation, 1999, 146(3): 166-174.
  • 3Thomas J M, Baker C J, and Griffiths H D. HF passive bistatic radar potential and applications for remote sensing[C]. NewTrends for Environmental Monitoring Using Passive Systems, Hyeres, French Riviera, Oct. 14-17, 2008:1 5.
  • 4Kuschel H and O'Hagan D. Passive radar from history to future[C]. International Radar Symposium (IRS), Vilnius, Lithuania, June 16-18, 2010: 1-4.
  • 5Berger Christian R, Bruno Demissie, Jrg Heckenbach, et al.. Signal processing for passive radar using OFDM waveforms[J] IEEE Journal of Selected Topics in Signal Processing, 2010. 4(1): 226-238.
  • 6万显荣.基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势[J].雷达学报(中英文),2012,1(2):109-123. 被引量:99
  • 7Howland P. Editorial: passive radar systems[J]. IEE Proceedings-Radar Sonar and Navigation, 2005, 152(3): 105-106.
  • 8Special issue on passive radar (Part I)[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(10): 5-59.
  • 9Special issue on passive radar (Part II)[J]. IEEE Aerospace and Electronic Systems Magazine, 2012, 27(11): 4-55.
  • 10Coleman C J and Yardley H. Passive bistatic radar based on target illuminations by digital audio broadcasting[J]. IET Radar, Sonar & Navigation, 2008, 2(5): 366-375.

二级参考文献36

共引文献111

同被引文献56

引证文献6

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部