期刊文献+

基于Gamma退化过程的剩余寿命预测及维修决策优化模型研究 被引量:12

Study on Residual Life Prediction and Maintenance Decision-Making Optimal Model Based on Gamma Deterioration Process
下载PDF
导出
摘要 通过研究产品故障发生的机理,建立了基于Gamma退化过程的状态空间模型,运用EM-PF参数估计方法对模型中的参数进行求解,确定模型的具体形式,进而得出产品剩余寿命的分布函数和概率密度函数。该剩余寿命预测方法将退化状态与故障阈值联系起来,从而降低了剩余寿命预测的误差,以轴承磨损量特征进行建模,完善了状态信息与剩余寿命之间的相互关系。利用剩余寿命的概率密度函数建立了以费用最小为目标的维修决策模型,确定最优的维修更换时间并实现维修决策的优化。最后用轴承寿命试验所得到的数据对模型进行了验证,实例结果证明该模型是可行有效的。 By studying the failure mechanism of the product, the state space model is established based on Gamma de- terioration process. The model parameters are solved with the EM - PF parameter estimation method, and the concrete form of model is confirmed. The distribution function and probability density function of remaining life are obtained. The prediction method combines the deterioration state with failure threshold, which reduces the error. The wear char- acteristics of bearings are modeled; the correlations between state information and remaining life are completed. Ac- cording to the probability density function of remaining life, a maintenance decision - making model is founded up, whose target is to get the most proper replacement time, optimizing the maintenance decision - making. At last, the da- ta of the bearing life experiment is taken for an example to verify the model, and the result shows that the model is prac- tical and effective.
出处 《轴承》 北大核心 2013年第4期44-49,共6页 Bearing
基金 "十二五"武器装备预先研究项目(51327020101)
关键词 滚动轴承 Gamma退化过程 剩余寿命 维修决策 rolling bearing Gamma deterioration process residual life maintenance decision -making
  • 相关文献

参考文献8

  • 1Noollwijk J M V. A Survey of the Application of Gamma Processes in Maintenance [ J ]. Reliability Engineering and System Safety,2009,94:2 - 21.
  • 2Abdel - Hameed M. A Gamma Wear Process [ J ]. IEEE Trans. Reliab. , 1975,24 ( 2 ) : 152 - 153.
  • 3冯添乐.基于退化数据的装备剩余寿命预测方法研究[D].石家庄:军械工程学院,2010.
  • 4Poison N G,Stroud J R, Muller P. Particle Filtering with Sequential Parameter Learning [ Z ]. University of Penn- sylvania Working Paper,2006.
  • 5Orchard M, Wu Bi - qing, Vachtsevanos G. A Particle Filtering Approach for On - Line Failure Prognosis in aPlanetary Carrier Plate [ J ]. International Journal of Fuzzy Logic and Intelligent Systems, 2007, 12 ( 7 ) : 221 - 227.
  • 6贾云献.基于多状态的CBM建模研究及原型软件开发[C]∥中国兵工学会首届维修专业学术年会论文集.北京:解放军出版社,2003:100-107.
  • 7林青,尹建君,胡波.条件线性状态空间模型Rao-Blackwellized卷积滤波算法[J].系统工程与电子技术,2010,32(6):1329-1333. 被引量:1
  • 8Si Xiao - sheng, Wang Wen - bin, Hu Chang - Hua. Remaining Useful Life Estimation--A Review on the Statistical Data Driven Approaches [ J ]. European Jour- nal of Operational Research,2011,213 : 1 - 14.

二级参考文献15

  • 1Steven M K.统计信号处理基础--估计与检测理论[M].北京:电子工业出版社,2003:361-363.
  • 2Bargman N,Ljung L,Gustafsson F.Terrain navigation using Bayesian statistics[R].Link(o)ping,Sweden:LiTH-ISY-R-2139 for the IEEE Control Systems Magazine,1999.
  • 3Gordon N J,Salmond D J,Smith A.Novel approach to nonlin-ear/non-Gaussian Bayesian state estimation[J].IEE Proceedings-F,1993,140(2):107-113.
  • 4Doucet A,Godsill S,Andrieu C.On sequential Monte Carlo sampling methods for Bayesian filtering[J].Statistics and Computing,2000(10):197-208.
  • 5ArulampalamM S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear non-gaussian bayesian tracking[J].IEEE Trans.on Signal Processing,2002,50(2):174-188.
  • 6Nordlund P J.Recursive state estimation of nonlinear systems with applications to integrated navigation[R].Link(o)ping,Sweden,LiTH-ISY-R-2321,Link(o)ping University,2000.
  • 7Mustiere F,Bolic M,Bouchard M.Rao-Blackwellised particle filters:examples of applications[C] //IEEE Canadian Conference on Electrical and Computer Engineering,2006:1196-1200.
  • 8De Freitas N.Rao-Blackwellised particle filtering for fault diagnosis[C] //IEEE Aerospace Conference Proceedings,2002:4-1767-4-1772.
  • 9Sch(o)n T,Gustafsson F,Nordlund PJ,et al.Marginalized particle filters for mixed linear/nonlinear state-space models[J].IEEE Trans.on Signal Processing,2005,53(7):2279-2289.
  • 10Sch(o)n T,Karlsson R,Gustafsson F,et al.The marginalized particle filter in practice[R].Linkoping,Sweden:LiTH-ISY-R-2715,Linkoping University,2005.

同被引文献121

引证文献12

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部