期刊文献+

一种基于TLD改进的视觉跟踪算法 被引量:12

An Algorithm of Visual Tracking Based on Tracking-learning-detection
下载PDF
导出
摘要 视觉跟踪是当前计算机视觉的热点问题之一。TLD(Tracking Learning Detecting)算法是一种可以在线学习的新颖视觉跟踪算法。针对算法中跟踪器采用的LK光流法无法捕捉大幅度运动目标的问题,引入图像金字塔模型,提出一种采用金字塔光流法的TLD的改进算法,解决了长时间跟踪中出现运动尺度过大时产生孔径的问题。实验结果表明,算法在复杂场景和大运动条件下,可以长时间准确、快速地实现视觉跟踪,具有较强的适应性和有效性。 Visual tracking is a research hotspot in computer vision. TLD(Tracking-Learning-Detecting) algo- rithm is a novel visual tracking algorithm which can online learning. Aiming at the problem that LK flow method can not capture a large scale movement of TLD algorithm, an improved method is presented which used pyramid optical flow as the tracker, to get more comer information to overcome the aperture problem. The experimental results show the presented algorithm is efficient and robust to the large scale movement during long term tracking.
出处 《科学技术与工程》 北大核心 2013年第9期2382-2386,共5页 Science Technology and Engineering
基金 国家自然科学基金(61201378) 中央高校基础科研基金(N110804005)资助
关键词 视觉跟踪 TLD算法 金字塔光流法 visual tracking TLD algorithm pyramid optical flow
  • 相关文献

参考文献9

  • 1孙巧,张胜修,李小峰.遮挡情况下基于粒子滤波的视觉跟踪算法研究[J].科学技术与工程,2012,20(32):8536-8538. 被引量:4
  • 2袁霄,王丽萍.基于MeanShift算法的运动人体跟踪[J].计算机工程与科学,2008,30(4):46-49. 被引量:27
  • 3刘晓辉,陈小平.基于扩展卡尔曼滤波的主动视觉跟踪技术[J].计算机辅助工程,2007,16(2):32-37. 被引量:10
  • 4Kalal Z, Matas J, Mikolajczyk K. Online learning of robust object detectors during unstable tracking, http://info, ee. surrey, ac. uk/ Persmal/Z. Ka|al/Publication2009_olcv. pdf. 2009.
  • 5Kalal Z, Miko|ajczyk K, Matas J. Face-TLD: tracking-learning-detec- tion spplied to faces, http://info, ee. surrey, ac. uk/Personal/Z. Ka- lal/Publications/2010_icip, pdf. 2010.
  • 6Kalal Z. Mikolajczyk K, Matas J. Forward-backward error: Automat- ic detection of tracking failures, http://info, ee. surrey, ac. uk/Per-sonal/Z. Kalal/Publications/2010_icpr. pdf. 2010.
  • 7Kalal Z, Matas J, Mikolajczyk K. P-N learning: bootstrapping binary classifiers by structural constraints, http://info, ee. surrey, ac. uk/ Personal/Z. Kalal/Publications/2010_cvpr. pdf. 2010.
  • 8Lucas B, Kanade T. An iterative image registration technique with anapplication to stereo vision. IJCAI, 1981 ; 81:674-679.
  • 9Bouguet J Y. Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm, http://robots, stanford, edu/ cs223b04/algo_tracking, pdf. 2000.

二级参考文献30

  • 1常发亮,马丽,乔谊正.遮挡情况下的视觉目标跟踪方法研究[J].控制与决策,2006,21(5):503-507. 被引量:9
  • 2陈小平.国际机器人足球(Robocup)最新进展.机器人技术与应用,2001,1:25-28.
  • 3BRADSKIGR.Computer vision face tracking as a component of a perceptual user interface[C]//Proc IEEE Workshop on Applications of computer Vision.Princeton,1998:214-219.
  • 4MIURA J,KANDA T,SHIRAI Y.An active vision system for real-time traffic sign recognition[C]//Proc IEEE on Intelligent Transportation Systems.Dearborn,MI,USA,2000:52-57.
  • 5FRANKE U,GORZIG S,LINDNER F,et al.Autonomous driving goes downtown[J].IEEE Intelligent Systems & Their Applications,1998,13(6):40-48.
  • 6PAN Feng,WANG Xuanyin,WANG Quanqiang.Moving object tracking research based on active vision[C]//Proc 5th World congress on Intelligent Control & Automation,2004,5:3 846-3 849.
  • 7YACHI K,WADA T,MATSUYAMA T.Human head tracking using adaptive appearance models with a fixed-viewpoint pan-tilt-zoom camera[C]// 2000 Proc Fourth IEEE International Conference on Automatic Face & Gesture Recognition,2000:150-155.
  • 8COMANICIUD,RAMESH V,MEER P.Kernel-based object tracking[J].IEEE Trans on Pattern Analysis & Machine Intelligence,2003,25(5):564-577.
  • 9PEREZ P,HUE C,VERMAAK J,et al.Color-based probabilistic tracking[ C ] // Proc European Conference on Computer Vision.Copenhagen,Denmark,2002,Ⅰ:661-675.
  • 10KALMAN R E.A new approach to linear filtering and prediction problems[J].Trans ASME J Basic Engineering,1960,32:35-44.

共引文献37

同被引文献95

  • 1董永坤,王春香,薛林继,杨明.基于TLD框架的行人检测和跟踪[J].华中科技大学学报(自然科学版),2013,41(S1):226-228. 被引量:6
  • 2Wang Qing,Chen Feng,Xu Wen-li,et al.An experimental com-parison of online object-tracking algorithms[C]∥Proceedings of SPIE:Image and Signal Processing.2011:138-147.
  • 3Zdenek K,Jiri M,Krystian M.Tracking-learning-detection[J].IE-EE Trans on Pattern Analysis and Machine Intelligence,2012,4(7):1409-1422.
  • 4Zdenek K,Jiri M,Krystian M.Forward-Backward Error:Automatic Detection of Tracking Failures[C]∥International Conference on Pattern Recognition (ICPR).2010:23-26.
  • 5Zdenek K,Jiri M,Krystian M.P-N Learning:Bootstrapping Binary Classifiers by Structural Constrains[C]∥Computer Vision and Pattern Recognition (CVPR).2010:49-56.
  • 6Lucas B D,Kanade T.An iterative image registration technique with an application to stereo vision[C]∥Proceedings of Imaging Understanding Workshop.1981:121-130.
  • 7Tomas V.Long-term Visual Object Tracking with online Lear-ning [D].Czech Technical University,2012.
  • 8Wang K,Babenko B,Belongie S.End-to-End Scene Text Recognition[C]∥2011 IEEE International Conference on Computer Vision (ICCV).2011:1457-1464.
  • 9Rupali S C,Patil.Object Tracking Based on Tracking-Learning-Detection . http://gnebehay.github.io/OpenTLD/genbehay_thesis_msc.pdf.
  • 10Li Tian-yu,Liu Jia,Gong chen,et al.Robust Object Tracking by Combining Boosting Learning and Particle Filter[J].Journal of Computational Information Systems,2012,2(8):9593-9601.

引证文献12

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部