期刊文献+

并行多媒体数据库中基于内容的高效检索的数据分配方法的研究 被引量:5

Research of Parallel Multimedia Database Efficient Retrieval of Content-based Data Distribution Method
下载PDF
导出
摘要 一种可按比例放大到带高维元数据描述特征的大型多媒体数据库,并且能提供基于内容的快速检索(CBR)的方法在许多应用领域变得越来越重要。为实现这个目标,通过通用的并行无共享架构实现。通过假设一个聚类过程并根据对CBR的复杂程度分析,提出了一种以最佳聚类数和节点数为特点的数据分配方法。通过在不同的高维数合成数据库方面进行实验对其进行了验证,并实现了对全K最邻近查询处理算法。 Zoom in to a pro-rata basis with high-dimensional metadata describing the characteristics of largescale multimedia database, and can provide content-based fast retrieval (CBR) is becoming increasingly important in many applications. To achieve this goal, the general parallel, shared-nothing architecture implementation. But data between different nodes to be how to allocate in order to obtain efficient parallel content-based retrieval results. By assuming a clustering process based on the complexity of the analysis of CBR, an optimal number of clusters and number of nodes as the characteristics of the data distribution method. And K nearest neighbor query processing algorithms implemented in the different aspects of high-dimensional synthetic database experiments to verify.
作者 王立君
出处 《科学技术与工程》 北大核心 2013年第9期2544-2548,共5页 Science Technology and Engineering
基金 吉林省社会科学基金(2011B186)资助
关键词 基于内容的快速检索 维数 数据分配 K最邻近结点算法 content-based retrieval dimension data distribution k-Nearest Neighbor algorithm
  • 相关文献

参考文献11

  • 1Ooi B C, Tan K L, Yu C, et al. Indexing the Distance: an efficient method to KNN processin& In : VLDB ' 01 : Proceedings of the 27th International Conference on Very Large Data Bases, 2004:421-430.
  • 2Tan K L, Yu C, Zhang 1 iDistance: an adaptive B + - tree based indexing method for nearest neighbor search. Journal of the ACM Transactions on Database Systems 30-2, 2005:364-397.
  • 3Aggarwal C C. On the Effects of Dimensionality reduction on high di- mensional similarity search. In: ACM PODS '01. Symposium on Principles of Database Systems Conference, New York : ACM Press, 2007:256-266.
  • 4Aggarwal C C, An efficient subspace sampling framework for high-di- mensional data reduction, selectivity estimation, and nearest-neighborsearch. IEEE Transactions on Knowledge and Data Engineering, 2004 ; 16 (10) : 1247-1262.
  • 5Li C, Chang E, Garcia-Molina H, et al. Clustering for approximate similarity search in high-dimensional spaces. IEEE Transactions on Knowledge and Data Engineering, 2006 ; 14 (4) :792-808.
  • 6Yu D, Zhang A. ClusterTree: Integration of Cluster Representation and Nearest Neighbor Search for Large Datasets with High Dimension- ality. IEEE Transactions onKnowledge and Data Engineering,2003; 15(5) : 1316-1337.
  • 7Kanungo T, Mount D M, Netanyahu N, et al. Anefficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pat- tern Analysis and Machine Intelligence,2002; 24:881-892.
  • 8Attila Gilrsoy E E. Data decomposition for parallel K-means cluste- ring. In: Wyrzykowski R, Dongarra J J, Paprzycki M, et al. eds. Parallel processing and Applied Mathematics. LNCS, Springer, Heidelberg,2004:3019:241 -248.
  • 9Berrani S-A, Amsaleg L, Gins P. Approximate Searches : k-Neighbors + Precision. In: CIKM '03. Proceedings of the 12th ACM Interna- tional Conference on Information and Knowledge New York: ACM Press ,2008:24-31.
  • 10Chavez E, Navarro G. Probabilistic proximity search: fighting the curse ofdimensionality in metric spaces. Information Processing Let- ters ,2003 ; 85( 1 ) :39-46.

同被引文献23

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部