期刊文献+

利用SIFT特征的非对称匹配图像拼接盲检测 被引量:12

Fogery image blind detection by asymemetric search based on SIFT
原文传递
导出
摘要 复制粘贴伪造图像鉴定检测图像中的疑似相似区域。传统的逐像素或逐块的鉴定方式耗时冗长。提出一种利用SIFT(尺度不变特征转换)特征的非对称搜索的复制粘贴伪造图像盲检测算法,算法利用图像SIFT特征初步定位复制粘贴伪造疑似区域,利用非对称特征搜索方式进行方向性的特征匹配,准确定位复制粘贴伪造区域。实验结果表明,本文算法能够准确检测复制粘贴伪造区域,检测结果不受高斯、椒盐等噪声的影响,检测效率比传统算法提高了1~2个数量级。 The identification of copy-paste forgery image is to find the suspicious region via pixel-by-pixel or block-by- block match, the computation costs is very heavy. An efficient blind forgery image detection approach based on scale-inva- riant feature transform (SIFT) is proposed in the paper, which employs SIFT keypoints for positioning the initial suspicious forgery region. The asymmetric search is exploited for refining the suspicious region and determining the forgery area. Experiments demonstrate that the proposed algorithm could significantly decrease the number of candidate search block, accurately identify the copy-paste forgery region regardless of the existence of gauss, salt and pepper noise, and the compu- tational cost is reduced by 1 ~ 2 orders of magnitude with compare to the conventional methods.
出处 《中国图象图形学报》 CSCD 北大核心 2013年第4期442-449,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(61073098) 教育部高等学校博士点基金项目(20113221120003) 江苏省六大人才高峰基金项目(2012-WLW-023) 江苏省自然科学基金项目(BK2009081) 江苏省科技支撑计划项目(SBE201077457) 江苏省高校自然科学基金项目(09KJB520006 11KJD520007) 南京大学软件新技术国家重点实验室开放基金项目(KFKT2008B15) 东南大学计算机网络和信息集成教育部重点实验室项目(K93-9-2010-04)
关键词 SIFT特征 非对称匹配 图像伪造 图像拼接 盲检测 scale-invariant feature transform asymmetric match copy-paste forgery image splicing blind detection
  • 相关文献

参考文献9

  • 1Bravo M J, Farid H. Diagnostic features are prominent in object representations [J ] . Journal of Vision, 2011, 11 ( 11 ) : B65. [DOI: 10. 1167/11.11. 865].
  • 2Farid H. A survey of image forgery detection [ J ]. IEEE Signal Processing Magazize, 2009, 26 ( 2 ) : 16-25. [ DOI: 10. 1109/ MSP. 2008. 931079 ].
  • 3Pevny T,Fridrich J. Merging Markov and DCT features for multi- class JPEG steganalysis [ C ]// Delp E, Wong P. Proceedings of Security, Steganography, and Watermarking of Multimedia Con-tents IX. Washington: SPIE Press, 2006:6505 (3): 1-13. [DOI : 10. 1117/12. 696774 ].
  • 4Popescu A C, Farid H. Exposing digital forgeries by detecting duplicated image regions, TR 2004-515 [ R. Hanover, USA: Dartmouth College, 2004.
  • 5Li G H, Wu Q, Tu D, et al. A sorted neighborhood approach for detecting duplicated regions in image forgeries based on DWT and SVD [ C ]//Proceedings of 2007 IEEE International Conference on Multimedia and Expo. Piscataway, New Jersey: IEEE Press, 2007:1750-1753. [ DOI: 10. ll09/ICME. 2007. 4285009].
  • 6Wang J, Liu G, Li H, et al. Detection of image region duplica- tion forgery using model with circle block [ C ]// Proceedings of International Conference on Multimedia Information Networking and Security. Piscataway, New Jersey : IEEE Press, 2009 : 25- 29. [DOI: 10. 1109/MINES. 2009. 142].
  • 7Lowe D G. Object recognition from local scale-invariant features [ C ]//Proceedings of the 7th International Conference on Com- puter Vision. Piscataway, New Jersey: IEEE Press, 1999:1150- 1157. [DOI : 10. 1109/ICCV. 1999. 790410 ].
  • 8Lindeberg T. Scale-space theory : a basic tool for analyzing struc- tures at different scales[ J]. Journal of Applied Statistics, 1994, 21 (2) :224-270. [DOI: 10. 1080/757582976].
  • 9李生红,张爱新,郑燕双,朱彤,金波.基于SIFT的图像复制遮盖篡改检测技术[J].解放军理工大学学报(自然科学版),2009,10(4):339-343. 被引量:5

二级参考文献8

共引文献4

同被引文献137

  • 1罗棻,陈华富,尧德中.基于投影的fMRI时间序列图像配准方法研究[J].电子科技大学学报,2004,33(4):410-413. 被引量:4
  • 2胡社教,葛西旺,陈宗海.基于角点特征的KLT跟踪全景图像拼接算法[J].系统仿真学报,2007,19(8):1742-1744. 被引量:17
  • 3石雅笋.改进的SURF图像配准算法研究[D].成都:电子科技大学,2008.
  • 4Lowe D. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.[DOI: 10.1023/B:VISI.0000029664. 99615.94].
  • 5Barreto J P, Vasconcelos F. sRD-SIFT: keypoint detection and matching in images with radial distortion[J]. IEEE Transactions on Robotics, 2012, 28(3): 752-760.[DOI: 10.1109/TRO.2012.2184952].
  • 6Mikolajczyk K, Schmid C. A performance evaluation of local descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.[DOI: 10.1109/TPAMI.2005.188].
  • 7Heikkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns[J]. Pattern Recognition, 2009, 42(3): 425-436.[DOI: 10.1016/j.patcog.2008.08.014].
  • 8Gupta R, Patil H, Mittal A. Robust order-based methods for feature description[C]// Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA:IEEE Press, 2010: 334-341.[DOI: 10.1109/CVPR.2010.5540195].
  • 9Wang Z H, Fan B, Wu F C. Local intensity order pattern for feature description[C]// Proceedings of the IEEE International Conference on Computer Vision. Barcelona, Spain:IEEE Press, 2011: 603-610.[DOI: 10.1109/ICCV.2011.6126294].
  • 10Fan B, Wu F C, Hu Z Y. Rotationally invariant descriptors using intensity order pooling[J]. IEEE Transactions on Pattern analysis and Machine Intelligence, 2012, 34(10): 2031-2045.[DOI: 10.1109/TPAMI.2011.277].

引证文献12

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部