期刊文献+

基于双层HHMM的产品评论特征和情感分类 被引量:3

Features and Opinions Classification of Chinese Product Reviews Based on Two-level HHMMs
下载PDF
导出
摘要 近年来,中文产品评论的特征情感分类是Web数据挖掘的重要研究内容之一。提出了一套完整的产品命名实体、特征词、情感词以及边界的标注规则,设计了多层次的混合标签模式;提出了双层HHMM(层级隐马尔科夫模型)结构,将词形标注和词性标注的特点进行融合;提出了基于词形标注的HHMM-1算法和基于词性标注的HHMM-2算法,实现复杂短语的自动标注。实验证明,双层HHMM模型起到了互补的作用,模型的查全率和F-score值均有较大提高。 In recent years,feature and opinion classification of Chinese product review is one of the most important research fields in Web data mining.A well-defined specification on data annotation for product named entities,features,opinions and boundaries was proposed and a hybrid tag representation was designed.By integrating linguistic features and POS features into automatic learning,a novel two-level Hierarchical HMMs(HHMMs) framework was put forward.The HHMM-1 and HHMM-2 algorithms were advanced to identify features and opinion entities automatically.The experimental results showed that two-level HHMM works in a mutual complementation way,which makes the recall and F-score of our approach obviously outstanding.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2013年第2期94-102,共9页 Journal of Sichuan University (Engineering Science Edition)
基金 四川省科技支撑计划资助项目(030405301054) 四川大学青年教师科研启动基金资助项目(2011SCU11012)
关键词 WEB数据挖掘 特征情感分类 标注规则 双层HHMM Web data mining feature and sentiment classification tagging specification two-level HHMM
  • 相关文献

参考文献28

  • 1Hu Minqing, Liu Bing. Mining opinion features in customer reviews [ C ]//Proceedings of AAAI. Washington D C : AAAI Press ,2004:755 - 760.
  • 2Liu Bing. Web data mining:Exploring hyperlinks, contents, and usage data [ M ]. New York: Springer,2006.
  • 3Yu Hang, Hatzivassiloglou V. Towards answering opinion questions:Separating facts from opinions and identifying the polarity of opinion sentences [ C ]//Proceedings of the Conference on Empirical Methods in Natural Language Processing( EMNLP 2003 ). 2003 : 1777 - 1783.
  • 4Nasukawa T, Yi J. Sentiment analysis : Capturing favorability using natural language processing[ C]//Proceedings of the Co-fference on Knowledge Capture. 2003:61 -67.
  • 5Yi J, Nasukawa T, Bunescu R, et al. Sentiment analyzer: Extracting sentiments about a given topic using natural language processing techniques [ C ]//Proceedings of the IEEE International Conference on Data Mining ICDM 2003 ). 2003:379 - 386.
  • 6Niu C, Li W, Ding J, et al. A bootstrapping approach to named entity classification using successive learners [ C ]// Proceedings of the 41st Annum Meeting of the Association for Computational Linguistics. 2003:335 -342.
  • 7Pierre J M. Mining knowledge from text collections using automatically generated metadata [ C ]//Proceedings of Fourth International Conference on Practical Aspects of Knowledge Management (PAKM2002). 2002:537 - 548.
  • 8Bick E. A named entity recognizer for Danish [ C ]//Proceedings of the 4th International Conference on Language Resources and Evaluation ( LREC2004). 2004:305 - 308.
  • 9Hu M, Liu B. Mining and summarizing customer reviews [ C ]//Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (KDD' 04). 2004 : 168 - 177.
  • 10Turney P. Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews [ C ]// Proceedings of the Association for Computational Linguistics (ACL 2002). 2002:417 - 424.

二级参考文献27

共引文献43

同被引文献28

  • 1郜燕,刘文芬.基于隐Markov过程的网络信任评估模型[J].四川大学学报(工程科学版),2015,47(3):101-107. 被引量:2
  • 2Zhao Jianhua,Li Weihua. Intrusion detection based on im- proved SOM with optimized GA[ J]. Journal of Comput- ers,2013,8(6) :1456 - 1463.
  • 3Xie Yi,Tang S,Xiang Y,et al. Resisting web proxy-based H3"FP attacks by temporal and spatial locality behavior[J]. IEEE Transactions on Parallel and Distributed Sys- tems,2013,24(7) :1401 - 1410.
  • 4Warrender C, Forresr S, Pearlmutter B. Detecting intrusions using system calls: Alternative data models [ C ]//Gong L, Reiter M K. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA : IEEE, 1999 : 133 - 145.
  • 5Qiao Y,Xin X W,Bin Y,et al. Anomaly intrusion detec- tion method based on HMM[J]. Electronics Letters,2002, 38(13) :663 -664.
  • 6Cho S B ,Park H J. Efficient anomaly detection by model- ing privilege flows using Hidden Markov Model[J]. Com- puters & Security,2003,22( 1 ) :45 - 55.
  • 7Zheng Ruijuan, Zhang Mingchuan, Wu Qingtao, et al. A- nalysis and application of bio-inspired multi-net security model[ J]. International Journal of Information Security, 2010,9(1) :1 -17.
  • 8Huang Jenyan, Liao Ien, Chung Yufang, et al. Shielding wireless sensor network using Markovian intrusion detec- tion system with attack pattern mining [ J ]. Information Sciences,2013,231 : 32 - 44.
  • 9周星,彭勤科,王静波.基于两层隐马尔可夫模型的入侵检测方法[J].计算机应用研究,2008,25(3):911-914. 被引量:4
  • 10赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:544

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部