期刊文献+

金纳米粒子掺杂DNA-CTMA-DPFP薄膜的表面增强拉曼散射特性 被引量:4

Surface Enhanced Raman Scattering Characteristics of Gold-nanoparticles-doped DNA-CTMA-DPFP Film
下载PDF
导出
摘要 采用柠檬酸三钠还原氯金酸和离子交换法制备金纳米粒子掺杂DNA-CTMA材料,利用钯催化反应合成9,9-二乙基-2,7-二-(4-吡啶)芴荧光染料(DPFP),将DPFP与DNA-CTMA混合后,旋凃制备金纳米粒子掺杂的DNA-CTMA-DPFP薄膜样品。通过吸收光谱、荧光光谱和拉曼光谱的测量,研究了薄膜样品的光学特性和表面增强拉曼散射(SERS)特性。实验结果表明,薄膜样品在300~360 nm的吸收主要来自DPFP,在500~700 nm的吸收来自样品中金纳米粒子的局域表面等离子共振;样品在370,386,408 nm处的荧光峰分别对应DPFP的S10-S00、S10-S01和S10-S02能级的电子振动跃迁;在785 nm激光激发下,薄膜样品的拉曼散射主要来自DPFP分子,随着金纳米粒子掺杂比的增大,DPFP分子的拉曼散射峰强度逐渐增强。因此,金纳米粒子掺杂DNA-CTMA薄膜适合作为多种染料分子的SERS基底。 The gold nanoparticles were prepared by the reduction of gold chloride with sodium citrate in aqueous solution and the gold-nanoparticles-doped DNA-CTMA complexes were prepared by ion-change method,and the 4-(9,9-diethyl-2-(pyridin-4-yl)-9H-fluoren-7-yl) pyridine(DPFP) was synthesized via a Suzuki coupling reaction.The gold-nanoparticles-doped DNA-CTMA-DPFP film samples were fabricated by spin-coating the mixed butanol solutions of gold-nanoparticles-doped DNA-CTMA complexes and DPFP.The optical spectra properties and surface enhanced Raman scattering(SERS) characteristics of the film samples were characterized by measuring their absorption spectra,fluorescence spectra,and Raman spectra,respectively.The experimental results show that the absorption of film samples in the range of 300-360 nm are derived mainly from the DPFP dye molecule,whereas the absorption ranging from 500 nm to 700 nm come from the local surface plasma resonance(LSPR) of gold nanoparticles,and the fluorescence spectra exhibits well-defined vibronic peaks at 370 nm(S10-S00 transition),386 nm(S10-S01 transition),with a shoulder near 408 nm(S10-S02 transition).The Raman spectra of DPFP dye molecule in the film samples were excited by a laser with the wavelength 785 nm,and the SERS peak intensities of DPFP molecule gradually increase as the increases of gold nanoparticles doped into the DNA-CTMA complexes.Therefore,the gold-naoparticles-doped DNA-CTMA films are suitable as the SERS substrates of many dye molecules.
出处 《发光学报》 EI CAS CSCD 北大核心 2013年第3期382-387,共6页 Chinese Journal of Luminescence
基金 国家自然科学基金(20971075 61275153) 宁波市国际科技合作计划项目(2010D10018) 浙江省大学生科技创新活动(创业孵化项目)(2011R405050)资助项目
关键词 金纳米粒子 芴染料分子 表面增强拉曼散射(SERS) gold nanoparticle fluorene dye molecule SERS
  • 相关文献

参考文献20

  • 1Wang L, Yoshida J, Ogata N, et al. Self-assembled supramolecular films derived from marine dexoyribonucleic acid (DNA)-cationic surfactant complexes: large-scale preparation and optical and thermal properties [ J]. Chem. Mater. , 2001, 13(4) :1273-1281.
  • 2Yaney P, Heckman E, Diggs D, et al. Development of chemical sensors using polymer optical waveguide fabricated withDNA [J]. SPIE, 2005, 5724.224-233.
  • 3Hagen J A, Li W, Steckla A J, et al. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer [J]. Appl. Phys. Lett. , 2006, 88(17) :171109-1-3.
  • 4Stadler P, Oppelt K, Singh T B, et al. Organic field-effect transistors and memory elements using deoxyribonucleic acid (DNA) gate dielectric [ J ]. Organic Electronics, 2007, 8 (6) :648-654.
  • 5丁海芳,张飞雁,林豪,周骏,谭瑞琴,王能平.荧光染料掺杂DNA-CTMA薄膜的放大自发辐射特性[J].中国激光,2011,38(5):175-180. 被引量:6
  • 6Stewart M E, Aanderton C R, Thompson L B, et al. Nanostructured plasmonic sensors [J]. Chem. Rev. , 2008, 108 (2) :494-521.
  • 7Stoerzinger K A, Hasan W, Lin J Y, et al. Screening nanopyramid assemblies to optimize surface enhanced Raman scat- tering [J]. J. Phys. Chem. Lett. , 2010, 1(7) :1046-1050.
  • 8Li W Y, Camargo P H C, Lu X M, et al. Dimers of silver nanospheres : Facile synthesis and their use as hot spots for sur- face-enhanced Raman scattering [J]. Nano Lett. , 2009, 9(1):485-490.
  • 9Sherry L J, Chang S H, Schatz G C, et al. Localized surface plasmon resonance spectroscopy of single silver nanocubes [J]. Nano Lett., 2005, 5(10) :2034-2038.
  • 10刘书朋,朱鸿飞,陈娜,陈振宜,胡玲.金颗粒为活性基底的裸鼠血清表面增强拉曼散射光谱分析[J].中国激光,2012,39(5):137-140. 被引量:12

二级参考文献73

  • 1黄茜 张晓丹 王烁 曹丽冉 孙建 耿卫东 熊绍珍 赵颖.物理学报,2009,58:2731-2731.
  • 2J. Mysliwiec, L. Sznitko, B. Sahraoui et al.. Amplified spontaneous emission in the spiropyran-biopolymer based system[J]. Appl. Phys. Lett., 2009, 94(24): 241106.
  • 3J. Mysliwiec, L. Sznitko, A. Miniewicz et al.. Study of the amplified spontaneous emission in a dye-doped biopolymer-based material[J]. J. Phys. D: Appl. Phys., 2009, 42(8): 085101.
  • 4J. Mysliwiec, L. Sznitko, A. Sobolewska et al.. Lasing effect in a hybrid dye-doped biopolymer and photochromic polymer system[J]. Appl. Phys. Lett., 2010, 96(14): 141106.
  • 5Emily M. Heckman, A. Joshua, Hagen et al.. Processing techniques for deoxyribonucleic acid:Biopolymer for photonics applications[J]. Appl. Phys. Lett., 2005, 87(21): 211115.
  • 6F. P. 舍费尔. 染料激光器[M]. 陈昌民, 孙孟嘉, 苏大春 译. 北京: 科学出版社, 1987. 10-20.
  • 7S. V. Frolov, Z. V. Vardeny, K. Yoshino. Cooperative and stimulated emission in poly (p-phenylene-vinylene) thin films and solutions[J]. Phys. Rev. B, 1998, 57(15): 9141-9147.
  • 8Lili Wang, Jonichi Yoshida, Naoya Ogata. Self-assembled supramolecular films derived from marine deoxyribonucleic acid (DNA)-cationic surfactant complexes:large-scale preparation and optical and thermal properties[J]. Chem. Mater., 2001, 13(4): 1273-1281.
  • 9P. Yaney, E. Heckman, D. Diggs et al.. Development of chemical sensors using polymer optical waveguides fabricated with DNA[C]. SPIE, 2005, 5724: 224-233.
  • 10J. A. Hagen, W. Li, A. J. Steckla et al.. Enhanced emission efficiency in organic light-emitting diodes using deoxyribonucleic acid complex as an electron blocking layer[J]. Appl. Phys. Lett., 2006, 88(17): 171109.

共引文献31

同被引文献23

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部