期刊文献+

一类非线性周期系统响应的精细积分法 被引量:1

A Precise Integration Method for Response Problems of Nonlinear Periodic Systems
下载PDF
导出
摘要 对于一类非线性周期/变系数微分方程,提出基于精细积分法的数值解法,处理非线性周期/变系数微分方程系统的响应问题。其积分策略是:采用精细积分格式处理常系数部分;采用线性插值格式处理非线性周期/变系数部分,既继承精细积分方法高度准确的特点,又保证足够的精度与较小的计算量。通过数值算例,与以往所用的微分方程直接数值积分法(如预估-校正哈明法)求得的解加以比较表明,对于给定的精度要求,精细积分法更经济有效,易于广泛用于具有非线性周期/变系数微分方程的工程问题中。 A numerical solution based on the precise integration method is presented for the response problems of nonlinear periodic systems. Its integration tactics is that using precise integration algorithm deals with the constant coefficient parts, using the linear interpolation simplifies the nonlinear periodic coefficient/variant coefficient parts, in order to carry forward the characteristics of high precision of precise integration and to strike a balance between the accuracy and the amount of calculation. The numerical properties of this solution are illustrated by comparing the numerical results and efficiency of the numerical integration methods for the ordinary differential equation such as Hamming' s predictor - corrector. It is concluded that the precise integration algorithm is more efficient and economical with respect to the same accuracy, and is practical for the wide range of engineering problems with the nonlinear periodic system.
出处 《力学季刊》 CSCD 2000年第2期145-148,共4页 Chinese Quarterly of Mechanics
基金 国家自然科学基金19732020
关键词 非线性周期 变系数微分方程 精细积分法 nonlinear periodic ordinary differential equation system precise integration method response problem
  • 相关文献

参考文献2

  • 1武汉大学 山东大学计算数学教研室.计算方法[M].北京:人民教育出版社,1979..
  • 2钟万勰,计算结构力学与最优控制,1993年

共引文献19

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部