期刊文献+

激光自混合干涉技术中两种不同形式功率谱密度反演颗粒粒度分布的比较

Comparison of inversion of two power spectral densities for particle-sizing distributions in laser optical self-mixing interference
下载PDF
导出
摘要 激光自混合干涉技术中颗粒粒度分布反演属于病态问题.为了得到较好的颗粒粒度分布,采用Chahine算法作为非负算法,分别对激光自混合干涉线性和对数形式的功率谱密度进行颗粒粒度分布的反演,比较了两种功率谱密度对应的颗粒粒度分布,并且采用Morrison迭代算法平滑Chahine算法的初始向量,减缓了颗粒粒度分布的振动.仿真结果表明对数形式的功率谱密度反演所得的颗粒粒度分布具有更好的抗噪声能力和稳定性. Inversion of particle size distribution belongs to ill-condition problem, in order to get relative good distribution,Chahine method was used as nonnegative iterative algorithm for the inversions of linear and logarithmic coordinate frequency power spectral density for estimating particle size distribution (PSD) from self-mixing interference (SMI) signals. The particle size distributions at the two different power spectral densities were also compared. Morrison's iterative method was adopted to smooth the initial vector of Chahine method served as a potent approach of alleviating the oscillation in PSD. Simulation results in- dicated that logarithmic form power spectral density had better ability of resisting noise and stability.
出处 《山东理工大学学报(自然科学版)》 CAS 2012年第3期22-27,共6页 Journal of Shandong University of Technology:Natural Science Edition
基金 山东省自然科学基金资助项目(ZR2010FM005)
关键词 激光自混合干涉 功率谱密度 颗粒粒度分布 截断奇异值分解 正则化参数 self-mixing interference power spectral density particle size distribution~ truncated singularvalue decomposition regularization parameter
  • 相关文献

参考文献13

  • 1Otsuka K, Abe K,Sano N,et al. Two-channel self-mixing laser Doppler measurement with carrier-frequency-division multiple- xing [J]. Appl. Opt. ,2005,44 (9): 1 709-1 714.
  • 2李功胜,于杰.一种新的求解第一类Fredholm积分方程正则化的数值分析[J].山东理工大学学报(自然科学版),2003,17(2):5-8. 被引量:8
  • 3Sudol S,Miyasaka Y,Otsuka K,et al. Quick and easy measure- ment of particle size of Brownian particles and planktons in wa- ter using a self-mixing laser[J]. Opt. Express. ,2006,14(3) 1 044-1 054.
  • 4Otsuka K,Abe K,Ko J-Y,et al. Real-time nanometer-vibration measurement with a self-mixing mierochip solid-state laser[J]. Opt. Lett.,2002,27 (15): 1 339-1 341.
  • 5Shen J, Cai X. Optimized inversion procedure for retrieval of particle size distributions from dynamic light-scattering signals in current detectionmode[J]. Opt. Lett.,2010,35 (12) :2 010- 2 012.
  • 6Ferri F,Bassini A,Paganini E. Modified version of the Chahinealgorithm to invert spectral extinction data for particle sizing [J]. Appl. Opt.,1995,34 (25): 5 829-5 839.
  • 7Engl H W. Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates[J]. J. Optim. Theory Appl. ,1987,52 (2) :209-215.
  • 8Hansen P C. The truncated SVD as a method for regularization[J]. BIT.,1987,27 (4) :534-553.
  • 9申晋,杨淑连.PCS颗粒测量技术中不同粒径颗粒的相互影响[J].山东理工大学学报(自然科学版),2004,18(4):31-34. 被引量:4
  • 10Zhu X,Shen J,Liu W,et al. Non-negative least-squares trun- cated singular value decomposition to particle size distribution inversion from dynamic light scattering data[J]. Appl. Opt. , 2010,49 (3): 6 596-6 596.

二级参考文献7

  • 1王乃宁.颗粒粒径的光学测量技术及应用[M].北京:原子能出版社,2000..
  • 2Kirsch A. An introduction to the mathematical theory of inverse problems[M]. Springer, NewYork, 1999.
  • 3Pecora R. Dynamic Light Scattering-Applications of Photon Correlation Spectroscopy [M]. New York:Plenum Press,1985.
  • 4Tkihonov A N, Arsenin V Y. Solutions of ill-posed problems[M].Washington: V. H. Winston & Sons, 1977.
  • 5Ruf H. Treatment of contributions of dust to dynamic light scattering data [J]. Langmuir, 2002, 18: 3 804-3 814.
  • 6李功胜,马逸尘,高登攀,庄弘炜.改进的Tikhonov正则化及其正则解的最优渐近阶估计[J].系统科学与数学,2002,22(2):158-167. 被引量:6
  • 7李功胜,张瑞,潘月君,卞秋菊.解第一类Fredholm积分方程的优化正则化策略[J].山东理工大学学报(自然科学版),2003,17(1):72-75. 被引量:5

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部