期刊文献+

基于免疫算法优化最小二乘支持向量机的变压器故障诊断 被引量:2

Transformer Fault Diagnosis Based on Least Squares Support Vector Machine of Immune Optimization
下载PDF
导出
摘要 由于支持向量机中的参数会显著影响着支持向量机分类的精确度,建立了一种基于免疫算法优化最小二乘支持向量机的电力变压器故障诊断模型;该模型以变压器油中主要溶解气体作为向量机的输入,以变压器故障类型作为其相应的输出,选用径向基核、使用免疫算法得到优化参数,充分发挥向量机较高泛化能力的优势。实例验证表明,这种方法能提高变压器的故障诊断准确率,反映了其有效性和正确性。 Considering the fact that the parameter setting for support vector machine (SVM) impacts on the classification accuracy, a model for power transformer fault diagnosis based on least squares support vector machine(LS-SVM) of immune optimization was establishmented,in which the concentration of the characteristic gases dissolved in transformer oil are the inputs of support vector machine and fault types of the transformer are the outputs. In the model the radial basis kernel is selected,the optimized parameters are obtained using the immune algorithm, and the superiority of SVM in processing finite samples is fully brought into play.Simulation results show that the algorithm can detect transformer faults with a higher diagnosis rate, and prove the effectiveness and correctness of the method.
作者 郭泽民
出处 《机械管理开发》 2012年第2期101-103,共3页 Mechanical Management and Development
关键词 故障诊断 电力变压器 免疫算法 最小二乘支持向量机 fault diagnosis power transformer immune algorithm least squares support vector machine
  • 相关文献

参考文献11

二级参考文献131

共引文献427

同被引文献41

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部