期刊文献+

基于状态观测器的四涡卷超混沌投影同步 被引量:1

Projective Synchronization of Four-Scroll Hyperchaotic System Based on State Observer
下载PDF
导出
摘要 利用状态观测器方法实现了四涡卷超混沌系统的投影同步;采用4阶Runge-Kutta方法,对投影同步进行了数值仿真。仿真结果表明,四涡卷超混沌系统和设计的状态观测器之间实现了投影同步,证实了理论结果的有效性。 Projective synchronization of a four-scroll hyperchaotic system is proposed by a state observer. The synchronization is simulated with the fourth-order Runge Kutta method. Nu- merical results show that the projective synchronization between the four-scroll hyperchaotic sys- tem and its state observer has been realized and indicate the effectiveness of the theoretical results.
作者 孙振武
出处 《上海电机学院学报》 2012年第6期404-408,共5页 Journal of Shanghai Dianji University
关键词 混沌 投影同步 状态观测器 chaos projective synchronization state observer
  • 相关文献

参考文献24

  • 1Lorenz E N. Deterministic non-periodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2) : 130-141.
  • 2Chen Guanrong, Ueta T. Yet another chaotic at- tractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1476.
  • 3Liu Chongxin, Liu Ling, Liu Tao, et al. A new butterfly-shaped attractor of Lorenz-like system[J]. Chaos, Solitons and Fractals, 2006, 28 ( 5 ) : 1196-1203.
  • 4王光义,丘水生,李宏伟,李彩芬,郑艳.A new chaotic system and its circuit realization[J].Chinese Physics B,2006,15(12):2872-2877. 被引量:23
  • 5Liu Chongxin, Liu Ling, Liu Tao. A novel three-di- mensional autonomous chaos system [J]. Chaos, Solitons and Fraetals, 2009, 39(4): 1950-1958.
  • 6董恩增,陈在平,陈增强,袁著祉.A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system[J].Chinese Physics B,2009,18(7):2680-2689. 被引量:12
  • 7Wang L. 3-scroll and 4-scroll chaotic attractors generated from a new 3-D quadratic autonomous system[J]. Nonlinear Dynamics, 2009, 56(4):453-462.
  • 8Qi Guoyuan, Chen Guanrong. Analysis and circuit implementation of a new 4D chaotic system[J]. Physics Letters A, 2006, 352(4-5): 386-397.
  • 9Qi Guoyuan, van Wyk B J, van Wyk M A. A four- wing attractor and its analysis[J]. Chaos, Solitons and Fractals, 2009, 40(4): 2016-2030.
  • 10Jia Qiang. Generation and suppression of a new hy- perchaotie system with double hyperchaotic attract- ors[J]. Physics Letters A, 2007, 371(5-6): 410-415.

二级参考文献40

  • 1Carroll T L and Pecora L M 1990 Phys. Rev. Lett. 04 821.
  • 2Carroll T L and Pecora L M 1991 IEEE Trans. Circuits Syst. 38 453.
  • 3Dai D and Ma X K 2001 Acta Phys. Sin. 50 1237 (in Chinese).
  • 4Li Z and Han C Z 2002 Chin. Phys. 11 9.
  • 5Cuomo K M and Oppenheim A V 1993 Phys. Rev. Lett.71 65.
  • 6Murali K 2000 Phus. Lett. A 272 184.
  • 7Morgul 0 1999 Phys. Rev. Lett. 82 77.
  • 8Morgul 0 and Feki M 1997 Phys. Rev. E 55 5004.
  • 9Lai J W, Zhou S P, Li G H and Xu D M 2001 Acta Phys.Sin. 50 21 (in Chinese).
  • 10Lorenz E N 1963 J. Atmos. Sci. 20 130.

共引文献55

同被引文献16

  • 1Mata-Machuca J L, Martinez-Guerra R, Aguilar- Lopez R, et al. A chaotic system in synchronization and secure communications[J]. Communication in Nonlinear Science and Numerical Simulation, 2012, 17(4) . 1706-1713.
  • 2Li Zhgang, Xu Daolin. A secure communication scheme using projective chaos synchronization[-J]. Chaos, Solitons &- Fractals, 2004, 22 ( 2 ). 477-481.
  • 3Fallahi K, Leung H. A chaos secure communica- tion scheme based on multiplication modulation[J. Communication in Nonlinear Science and Numerical Simulation, 2010, 15(2): 368-383.
  • 4Cang Shijian, Qi Guoyuan, Chen Zengqiang. A four-wing hyper-chaotic attractor and transient cha- rs generated from a new 4-D quadratic autonomous system[J]. Nonlinear Dynamics, 2010, 59 (3); 515-527.
  • 5Dadras S, Momeni H R. Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D non- linear smooth autonomous system[-J. Physics Let- ters A, 2010, 374(11/12): 1368-1373.
  • 6Laoye J A, Vincent U E, Kareem S O. Chaos con- trol of 4D chaotic systems using recursive backstep-ping nonlinear controller[J]. Chaos, Solitons and Fractals, 2009, 39(1): 356-362.
  • 7Aguilar-Lopez R, Martinez-Guerra R. Control of chaotic oscillators via a class of model free active controller: suppression and synchronization [ J ]. Chaos, Solitons and Fractals, 2008, 38 ( 2 ). 531-540.
  • 8Zhou Xiaobing, Wu Yue, Li Yi, et al. Adaptive control and synchronization of a novel hyperchaotic system with uncertain parameters E J ]. Applied Mathematics and Computation, 2008 ( 1 ), 203: 80-85.
  • 9Ye Zhiyong, Deng Cunbing. Adaptive synchroniza- tion to a general non-autonomous chaotic system and its applications[J]. Nonlinear Analysis Real World Applications, 2012, 13(2): 840-849.
  • 10Pai Nengsheng, Chang Shihping. Design and im- plementation of fuzzy sliding mode controllers for generalized projective synchronization of chaos hori- zontal platform systems[J]. Computers - Mathe- matics with Applications, 2012, 64(5): 709-720.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部