期刊文献+

不同噪声背景下基于广义斜投影算子的滤波方法 被引量:3

Filtering approach based on generalized oblique projection operators under different contaminating noises
下载PDF
导出
摘要 常规的斜投影(conventional oblique projection,COP)滤波通常假定背景噪声是高斯白噪声,而实际环境中的背景噪声多为色噪声。通过拓展COP的概念,得到一类广义斜投影(generalized oblique projection,GOP)算子,提出一种同时适用于白噪声和色噪声背景的最小化干扰约束广义斜投影(minimized interference constrained generalized oblique projection,MIGOP)自适应滤波方法,实现了在不同噪声背景下应用统一的斜投影算子进行滤波,并讨论了MIGOP滤波方法与其他各种相关的斜投影滤波方法之间的区别与联系。仿真实验验证了理论分析结果,通过对比不同噪声背景下各种GOP滤波方法的性能证实了所提方法的有效性。 Conventional oblique projection (COP) filter concentrates on white background noise, whereas the colored noise often shows in real circumstances. Through extending the concept of COP, a generalized oblique projection (GOP) operator is defined and a minimized interference constrained generalized oblique projec tion (MIGOP) filter technique which can be used in both white and colored noise scenarios is proposed. The fil tering operator under different contaminating noises is unified and the relationship between the proposed MIGOP filter and some other kind of oblique projection filtering approaches is also researched. The theoretical analysis is verified by numerical simulations and the effectiveness colored noise backgrounds, of the proposed GOP filters is proved in both white and
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第4期713-719,共7页 Systems Engineering and Electronics
基金 国家自然科学基金(61171180) 国家重点基础研究发展计划(973计划)(2007CB310606) 哈尔滨工业大学科研创新基金(HIT-NSRIF.2011117)资助课题
关键词 斜投影 色噪声 干扰抑制 滤波 线性约束最小方差 oblique projection colored noise interference suppression filtering linearly constrained mini-mum variance (LCMV)
  • 相关文献

参考文献3

二级参考文献27

共引文献27

同被引文献51

  • 1陈辉,苏海军.强干扰/信号背景下的DOA估计新方法[J].电子学报,2006,34(3):530-534. 被引量:51
  • 2McCloud M L, Scharf L L. Interference estimation with applications to blind multiple-access communication over fading chan- nels[J]. IEEE Trans. on Information Theory, 2000, 46 (3) : 947 - 961.
  • 3Wu C H. The preeoder design for intrablock MMSE equalization and block delay detection with a modified oblique projection framework[J]. The Institute of Electronics, Information and Communication Engineers ( IEICE) Trans. on Fundamentals of Electronics Communications and Computer Sciences, 2011, E94- A(2): 829-832.
  • 4Cui Y, Liu K H, Wang J F. Direction-of-arrival estimation for coherent GPS signals based on oblique projection [J]. Signal Processing, 2012, 92(1): 294-299.
  • 5Mao X P, Liu A J, Hou H J. Oblique projection polarisation filtering for interference suppression in high-frequency surface wave radar[J]. IET Radar, Sonar and Navigation, 2012, 6 (2): 71-80.
  • 6McCloud M L, Scharf L L. A new subspace identification algorithm for high-resolution DOA estimation[J]. IEEE Trans. on Antennas and Propagation ,2002, 50(10) : 1382 - 1390.
  • 7Boyer R. Oblique projection for source estimation in a competi- tive environment., algorithm and statistical analysis[J]. Signal Processing, 2009, 89(12): 2547- 2554.
  • 8Hu Y, Zhang X, Zhu F. Image recognition using iterative oblique projection[J]. Electronics Letters, 2005, 41 (20) : 1109 - 1110.
  • 9Behrens R T, Scharf L L. Signal processing applications of ob- lique projection operators[J]. IEEE Trans. on Signal Processing, 1994, 42 (6): 1413-1424.
  • 10Scharf L L, McCloud M L. Blind adaptation of zero forcing projections and oblique pseudo-inverses for subspace detection and estimation when interference dominates noise[J]. IEEE Trans. on Signal Processing, 2002, 50(12) : 2938 - 2946.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部