期刊文献+

时变噪声统计估计的自适应UKF目标跟踪算法 被引量:1

Adaptive UKF Target Tracking Algorithm Based on Time-Varying Noise Statistics Estimation
下载PDF
导出
摘要 针对目标跟踪中非线性滤波精度下降甚至发散的问题,提出了一种时变噪声统计估计的自适应无迹卡尔曼滤波(Unscented Kalman Filtering,UKF)算法。首先将系统模型和滤波算法修正为适于噪声非零均值时的情况,然后根据极大后验估计原理,推导出一种次优的时变噪声统计估计器,其系数通过指数加权的衰减因子计算得到,最后与传统UKF算法结合形成自适应的滤波算法。仿真结果表明,该算法保证了滤波收敛性,能够对目标进行有效跟踪,而且滤波精度显著提高。 To solve the problem that the filtering accuracy is decline even divergence during target tracking in nonlinear system, a kind of adaptive unscented Kalman filtering (UKF) algorithm based on time-varying noise statistics estimation was proposed. Firstly, system models and filtering algorithm were modified to be suitable for the nonzero mean situation. Afterwards, according to maximum a posterior estimation theory, a sub-optimal time-varying noise statistics estimator was designed, whose coefficient was calculated by use of exponential weighted fading factor. Finally, the adaptive filtering algorithm was developed with the aid of combination with traditional UKF algorithm. Simulation results showed that this algorithm can converge and achieve the effective target tracking, and the filtering accuracy can be remarkably increased.
出处 《火炮发射与控制学报》 北大核心 2013年第1期51-55,共5页 Journal of Gun Launch & Control
基金 航空科学基金(20105196016)
关键词 无迹卡尔曼滤波 自适应滤波 目标跟踪 时变噪声统计 unscented Kalman filtering adaptive filtering target tracking~ time-varying noise statistics
  • 相关文献

参考文献12

  • 1EINICKE G A, WHITE L B. Robust extended Kalman filtering[J]. IEEE Transactions on Signal Processing, 1999, 47(9): 2596-2599.
  • 2JOSEPH J, LAVIOLA Jr. A comparison of unscented and extended Kalman filtering for estimating quaternion motion[C]//Proceedings of the American Control Conference. Denver : [s. n. ], 2003 : 2435 - 2440.
  • 3JULIER S J. The scaled unscented transformation [C]//Proceedings of the American Control Conference. Anchorage: [s. n.], 2002 : 4555 - 4559.
  • 4JULIER S J, UHLMANN J K. Unscented filtering and nonlinear estimation [J]. Proceedings of the IEEE, 2004, 92(3):401 - 422.
  • 5WAN E A, VAN DER MERVE R. The unscented Kalman filter for nonlinear estimation[C]//Proceedings of the IEEE Adaptive Systems for Signal Processing, Communication and Control Symposium. Lake Louise:[s. n.],2000:153 - 158.
  • 6杨凯,倪龙强,张丽华,姚新涛,屈武斌.基于IMM-UKF的非线性机动目标跟踪仿真研究[J].火炮发射与控制学报,2010,31(3):12-16. 被引量:3
  • 7江宝安,万群.基于UKF-IMM的双红外机动目标跟踪算法[J].系统工程与电子技术,2008,30(8):1454-1459. 被引量:13
  • 8张文玲,朱明清,陈宗海.基于强跟踪UKF的自适应SLAM算法[J].机器人,2010,32(2):190-195. 被引量:33
  • 9SAGE A P, HUSA G W. Adaptive filtering with un- known prior statistics[C]. Tokyo: Proceedings of the Joint Automatic Control Conference, 1969, 760 -769.
  • 10石勇,韩崇昭.自适应UKF算法在目标跟踪中的应用[J].自动化学报,2011,37(6):755-759. 被引量:96

二级参考文献46

  • 1潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:231
  • 2LI Maohai,HONG Bingrong,LUO Ronghua.Mobile Robot Simultaneous Localization and Mapping Using Novel Rao-Blackwellised Particle Filter[J].Chinese Journal of Electronics,2007,16(1):34-39. 被引量:11
  • 3谢恺,周一宇,薛模根,韩裕生.基于平方根UKF的自由段目标跟踪算法[J].国防科技大学学报,2007,29(2):97-100. 被引量:8
  • 4Ristic H M, Arulampalam S. Tracking a maneuvering target using angle-only measurements: algorithms and perfor-mance [EB/OL].www. elsevier.com/locatelsigpro.
  • 5Minvielle P. Tracking a ballistic re-entry vehicle with a sequential Monte-Carlo filter[C]//Proc of Aerospace Conference Toulouse, France: IEEE Press, 2002 : 1773 - 1787.
  • 6Li X R,Jilkov V P. A survey of maneuvering target tracking. Part V: multiple-model methods[J].IEEE Trans. on Aerospace and Electronic Systems, 2005, 41 (4) : 1255 - 1321.
  • 7Julier S, Uhlmann J, Durrant-Whyte. A new method for the non linear transformation of means and covariances in filters and estimators[J]. IEEE Trans. on Automatic Control, AC- 45.3 (Mar. 2000).
  • 8Gordon N J, salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [C]//Proc. of Inst. Elect. Eng. F, Vol. 140,no. 2.
  • 9Crassidis J L, Markley F L. Predictive filtering for nonlinear systems [J ]. J of Guidance, Control, and Dynamics, 1997, 20(3): 566-572.
  • 10Gordon N , Salmond D. Novel approach to non-linear and non Gaussian Bayesian state estimation[J]. Proc of Institute Electric Engineering, 1993, 140(2): 107- 113.

共引文献166

同被引文献10

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部