期刊文献+

运用随机森林分析药品不良反应发生的影响因素 被引量:8

Random Forest for Influencing Factor Analysis in Adverse Drug Reactions
下载PDF
导出
摘要 目的拟采用随机森林来分析不良反应发生的影响因素。方法以2007年上海等地发生的阿糖胞苷引发肌无力及截瘫的不良反应为例,运用随机森林分析其重要的影响因素,将分析结果与实际情况进行对比,用于验证随机森林在不良反应数据中应用的可行性。结果通过随机森林综合评价得出的四个重要影响因素:触发时间、用药途径、季节和生产厂家,其均为阿糖胞苷事件的重要特征。且通过随机森林的计算,相比较于其他不良反应,肌无力和截瘫与各个影响因素之间存在的关联可能性更大,提示肌无力和截瘫需重点关注,这也与阿糖胞苷事件的实际情况相吻合。结论随机森林的综合评价机制能够从复杂数据中识别出真正重要的影响因素,并定量估计它们对不良反应发生的影响,有助于及时判别药品不良反应的特征、发生机制、危险人群和可能的引发途径,在药品不良反应信号的发现、因果关联评价和指导临床用药方面均有广泛的应用价值。 Objective To estimate the effect of influencing factors on the occurrence of adverse drug reactions by random forest algo- rithm. Methods The muscular weakness and paraplegia caused by cyt- arabine in 2007 at Shanghai and some other places in China were used as an example in this research. Random forest was used to analyze the important influencing factors of this adverse drug reaction, and the results calculated by random forest were compared with the features of the cytarabine event. Thus, the feasibility of random forest algorithm in spontaneous reporting system databases can be assessed. Results The muscular weakness and paraplegia were caused by two batches of impure cytarabine injections pro- duced by a particular company, and these cytarabine injections caused the nervous disorders via intrathecal route of administration. The four important influencing factors calculated by random forest: route of administration, time to onset, season and company were all the important features of the cytara- bine event. According to the results of random forest, the muscular weak- ness and paraplegia were more possibly related to the influencing factors compared to the other adverse reactions. So, close attention should be paid to muscular weakness and paraplegia. This result of random forest is in con- formity with the real event of cytarabine as well. Conclusion The ran- dom forest algorithm can identify the real important influencing factors from complex adverse drug reaction datasets and evaluate their effects on adverse reactions. It will be useful for further analyzing the features and mechanisms of adverse reactions, discriminating high risk populations, and possible route of administrations. So, random forest algorithm may be a valuable tool in practical use such as signal detection, causal relationship assessment and clinical practice guidance.
出处 《中国卫生统计》 CSCD 北大核心 2013年第2期209-213,216,共6页 Chinese Journal of Health Statistics
基金 国家自然科学基金资助项目(No.30872186 No.81072388) 上海领军人才培养计划(022) 上海市优秀学科带头人计划(A类)(09XD1405500)
关键词 随机森林算法 药品不良反应 自发呈报系统 影响因素分析 药物警戒 Random forest Adverse drug reaction Spontaneous reporting system Influencing factor analysis Phar-macovigilance
  • 相关文献

参考文献28

  • 1Bate A,Evans S. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidemiol Drug Saf,2009,18 (6) :427-436.
  • 2Hauben M,Bate A. Decision support methods for the detection of ad- verse events in post-marketing data. Drug Discov Today, 2009,14 ( 7- 8) :343-57.
  • 3Stephenson WP, Hauben M. Data mining for signals in spontaneous re- porting databases:proceed with caution. Phannacoepidemiol Drug Saf, 2007,16:359-365.
  • 4Krisztina N,Jeno R,Andrea H,et al. Tree-based methods as an alterna- tive to logistic regression in revealing risk factors of crin-biting in hor- ses. Journal of Equine Veterinary Science,2010,30 ( 1 ) :21-26.
  • 5Yoonhee K, Robert W, et al. Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proceedings Volume 3 Supplement 7,2009 : Genetic Anal- ysis Workshop 16.
  • 6Yah VS, Lawrence FB, et al. Application of machine learning algo- rithms to predict coronary artery calcification with a sibship-based de- sign. Genet Epidemio1,2008,32 (4) :350-360.
  • 7Mao W, Shannon K. An optimum random forest model for prediction of genetic susceptibility to complex diseases. Lecture Notes in Computer Science, 2007,4426 : 193-204.
  • 8Bureau A, Dupuis J, Falls K, et al. Identifying SNPs predictive of phe- notype using random forests. Genet Epidemio1,2005 ,28 :171-82.
  • 9Diaz U, Sara A, et al. Gene selection and classification of microarray da- m using random forest. BMC Bioinformatics ,2006,7:3.
  • 10Liaw A, Wiener M. Classification and regression by random forest. Rnews,2002,2 ( 3 ) : 18-22.

二级参考文献12

  • 1蒋一方,Tim Cole,潘蕙琦,居美芳,林钟芳,董小燕,张雷.上海市0~18岁体质指数百分位曲线及超重肥胖界值点标准的研制[J].中国儿童保健杂志,2004,12(6):461-464. 被引量:28
  • 2蒋一方,林钟芳.有关LMS软件程序应用介绍[J].中国儿童保健杂志,2005,13(4):363-364. 被引量:13
  • 3蒋一方,林钟方,居美芳,董小燕,张雷.上海市儿童身高别体重百分位标准的研制[J].上海预防医学,2005,17(11):513-515. 被引量:5
  • 4李继华 李德亮 宋雪民.鞘内注射阿糖胞苷引起脊髓神经根病三例.中华血液学杂志,1998,19(7):384-384.
  • 5上海市教育委员会,上海市体育运动委员会,上海市卫生局,1995年上海市中小学生体质和健康评价[M].上海:上海教育出版社,1996.6-8
  • 6Cole TJ, Green PJ. Smoothing reference centile curves: the LMS method and penalized likelihood[J]. Stat Med, 1992, 11 : 1305 - 1319.
  • 7CDC growth charts: United States[ EB/OL]. www. cdc. gov/nchs/data/ ad/ad314. pdf.
  • 8Bellizzi MC, Dietz WH. Workshop on childhood obesity: summary of the discussion[ J]. Am J Ciln Nutr, 1999,70 : 173 - 175.
  • 9Cole TJ, BeUizzi MC, Flegal KM, et al. Establishing a standard definition for child overweight and obesity worldwide: international survey [J]. BMJ, 2000, 320:1240 -1243.
  • 10张琦光.长春新碱误注入鞘内引起致死性神经系统损害一例.中华血液学杂志,1992,13(8):433-433.

共引文献7

同被引文献89

  • 1董师师,黄哲学.随机森林理论浅析[J].集成技术,2013,2(1):1-7. 被引量:149
  • 2叶章群.泌尿系结石研究现况与展望[J].中华实验外科杂志,2005,22(3):261-262. 被引量:268
  • 3曾永红,张景莉,付小梅.肾结石与尿酸、血脂、血糖的关联[J].国际医药卫生导报,2006,12(20):21-23. 被引量:4
  • 4Perkins SM, Tu W, Underhill MG, et al. The use of propensity scores in pharmacoepidemiologic research. Pharmacoepidemiol Drug Saf,2000,9 (2) :93-101.
  • 5Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika, 1983,70:41-55.
  • 6Westreich D, Lessler J, Funk MJ. Propensity score estimation : neural networks, support vector machines, decision trees ( CART ), and meta- classifiers as alternatives to logistic regression. J Clin Epidemiol,2010, 63(8) :826-833.
  • 7D'Agostino RB Jr. Propensity score methods for bias reduction in the comparison of a treatment to a non-randomized control group. Stat Med, 1998,17 ( 19 ) : 2265-2281.
  • 8Setoguchi S, Schneeweiss S, Brookhart MA, et al. Evaluating uses of data mining techniques in propensity score estimation : a simulation stud- y. Pharmacoepidemiol Drug Saf,2008,17 ( 6 ) :546-555.
  • 9Felix J. A Systematic Review of Propensity Score Methods in the Social Sciences. Multivariate Behavioral Research, 2011,46 : 1,90-118.
  • 10McCandless LC, Gustafson P, Austin PC. Bayesian propensity score a- nalysis for observational data. Stat Med, 2009,28 ( 1 ) : 94 -112.

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部