期刊文献+

均衡及约束凸优化问题公共解的一般迭代算法

A general iterative algorithm for finding a common solution of equilibrium and constrained convex minimization problems
原文传递
导出
摘要 梯度投影法在解决约束凸极小化问题中起到了重要的作用.基于Tian的一般迭代算法,本文将梯度投影法和平均算子方法相结合,首次提出隐式和显式的复合迭代算法,寻求均衡问题和约束凸极小化问题的公共解.在适当条件下,获得了强收敛定理. The gradient-projection algorithm (GPA) plays an important role in solving constrained convex mini- mization problems. Based on Tian's method, we combine GPA and averaged mapping approach to propose implicit and explicit composite iterative algorithms for finding a common solution of an equilibrium and a constrained convex minimization problem for the first time in this paper. Under suitable conditions, strong convergence theorems are obtained.
作者 田明 刘磊
出处 《中国科学:数学》 CSCD 北大核心 2013年第4期365-381,共17页 Scientia Sinica:Mathematica
基金 中央高校基本科研业务费专项资金(批准号:ZXH2012K001) 中国民航大学应用基础研究(批准号:2012KYM03)资助项目
关键词 均衡问题 约束凸优化问题 变分不等式 equilibrium problem constrained convex minimization variational inequality
  • 相关文献

参考文献32

  • 1Mann W R. Mean value methods in iteration. Proc Amer Math Soc, 1953, 4:506-510.
  • 2Moudafi A. Viscosity approximation method for fixed-points problems. J Math Anal Appl, 2000, 241:46-55.
  • 3Xu H K. Viscosity approximation methods for nonexpansive mappings. J Math Anal Appl, 2004, 298:279-291.
  • 4Yamada I. The hybrid steepest descent method for the variational inequility problem over the intersection of fixed point sets of nonexpansive mappings. In: Inherently Parallel Algorithms in Feasibility and Optimization and Their Application. Amsterdam: North-Holland, 2001, 8:473-504.
  • 5Marino G, Xu H K. A general method for nonexpansive mappings in Hilbert space. J Math Anal Appl, 2006, 318: 43-52.
  • 6Tian M. A general iterative algorithm for nonexpansive mappings in Hilbert spaces. Nonlinear Anal, 2010, 73:689-694.
  • 7Tian M. A general iterative method based on the hybrid steepest descent scheme for nonexpansive mappings in Hilbert spaces. In: International Conference on Computational Intelligence and Software Engineering, CiSE 2010. Piscataway, N J: IEEE, 2010, art. 5677064.
  • 8Tian M, Di L Y. A general iterative method based on the hybrid steepest descent scheme for variational inclusions, equilibrium problems. J Appl Math Informatics, 2011, 29:603-619.
  • 9Ceng L C, A1-Homidan S, Ansappri Q H, et al. An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings. J Comput Appl Math, 2009, 223:967-974.
  • 10Takahashi S, Takahashi W. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J Math Anal Appl, 2007, 331:506-515.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部