期刊文献+

一类小样本的统计方法建模及其可视化 被引量:2

A Small-Sample Modeling and Visualization on Statistical Methods
原文传递
导出
摘要 针对一类高维小样本数据,利用统计方法的非参数检验与偏最小二乘回归(PLS)构造小样本预测模型,实现基于Wilcoxon秩和检验的变量选择与基于PLS的变量压缩降维.并通过DNA序列分类问题实现基于统计方法的小样本数据建模与可视化,计算结果表明方法对小样本具有可行性、有效性. With a class of high-dimensional & sample are constructed using Hypothesis Test statistical methods,which carried out variables small-sample data, Prediction models of small- and Partial Least-Squares Regression(PLS) of selection on wilcoxon rank-sum test and variables compression & dimension reduction on PLS. And small-sample modeling and visualization on statistical methods are achieved by the instance of DNA sequence classification, the results show that the modeling methods of small-samples have feasibility and stability.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第7期68-75,共8页 Mathematics in Practice and Theory
基金 高校博士点专项科研基金(20070384003) 福建省教育厅科技项目(JB08244)
关键词 小样本数据 Wilcoxon检验 偏最小二乘回归 DNA序列分类 small-sample wilcoxon rank-sum test partial least-squares regression dna se- quence classification
  • 相关文献

参考文献8

二级参考文献23

  • 1丁世飞,靳奉祥,史忠植.基于PLS的信息特征压缩算法[J].计算机辅助设计与图形学学报,2005,17(2):368-371. 被引量:7
  • 2徐哲,刘荣.偏最小二乘回归法在武器装备研制费用估算中的应用[J].数学的实践与认识,2005,35(3):152-158. 被引量:24
  • 3王惠文.偏最小二乘回法方法及其应用[M].北京:国防工业出版社,2000..
  • 4王惠文.偏最小二乘回归方法及其应用[M].国防工业出版社,2000..
  • 5Rao C R, Toutenburg H. Linear Model [M]. New York:Springer -Verlag Press, 1995
  • 6Liu K, Cheng Y Q, Yang J Y. A generalized optional set of discriminant vectors [J]. Pattern Recognition, 1992, 25 (7):731~739
  • 7Yu B, Yuan B Z. A more efficient branch and bound algorithm for feature selection [J]. Pattern Recognition, 1993, 26 (6):883 ~ 889
  • 8Wold S,Albano C,Dunn M,Esbensen K,Hederg S.Pattern Regression Finding and Using Regularities im Multivariate Data[M].In Martens J In Proc IUFOST Conf"Food Research and Data",London Analysis Applied Science Publication,1983.
  • 9Wold S,et al.Modeling data tables by principal component and PLS:class patterns and quantitative predictive relations[J].Analysis,1984,12:477-485.
  • 10Hoskuldson A.PLS regression methods[J].Journal of Chemometrics,1988,2:211-228.

共引文献88

同被引文献14

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部