期刊文献+

带乘性噪声系统的传感器故障检测方法 被引量:3

Study of Sensor Fault Detection Method Based on Systems with Multiplicative Noise
下载PDF
导出
摘要 针对水下目标跟踪和石油地震勘探等领域中传感器故障检测的必要性和复杂性,提出了一种带乘性噪声系统的传感器故障模型。并基于状态估计,给出了故障发生前后新息序列正交性变化的结论及相关证明,由此建立了故障检测指标。该方法摆脱了基于状态估计的故障检测方法中对新息需满足正态分布特性的束缚,同时显著地提高了故障诊断的精度,也在一定程度上实现了对滤波器工作性能的监测及观测数据可靠性的判断。仿真结果表明:该方法能够及时有效的识别出故障发生点。 In view of the necessity and complexity of sensor fault detection as to the underwater target tracking and seismic exploration for oil,we propose a new sensor fault model based on systems with multiplicative noise.Before and after the fault happen we prove the statistical properties of innovation,based on which a new fault indicator is build.Different from the traditional methods restricted with the Gaussian distribution characteristics of the innovation,the new fault detection method is more flexible,which can not only improve the accuracy of fault detection markedly but achieve better performance in testing the filter and determining the reliability of the observational data.Simulation results show that the method can efficiently identify the fault point.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第4期112-116,共5页 Periodical of Ocean University of China
基金 山东省自然科学基金项目(ZR2010DQ003)资助
关键词 故障检测 乘性噪声 状态估计 新息 非高斯 正交性 fault detection multiplicative noise state estimation innovation non-Gaussian orthogonality
  • 相关文献

参考文献16

  • 1Lei Guo, Zhang Yu-Min, Wang Hong, et al. Observer-Based op- timal fault detection and diagnosis using conditional probability dis- tributions [J]. IEEE Transaction on Signal Processing, 2006, 54 (10): 3712-3719.
  • 2周东华,叶昊,王桂增.基于观测器方法的故障诊断技术若干重要问题的探讨[J].自动化学报,1998,24(3):338-344. 被引量:38
  • 3Takahisa Kobayashi, L?onald L, Simon. Evaluation of an enhanced bank of Kalman Filters for in-flight aircraft engine for fault diagnostics [J]. J Eng Gas Turbines Power, 2005, 127(3):497-514.
  • 4Patton R J, Frank P M. Fault diagnosis in dynamic systems: theo- ry and application [M]. NJ: Prentice-Hall Inc Upper Saddle Riv er, 1989.
  • 5Liu Xiang-Qun, Zhang Hong Yue, Liu Jun, et al. Fault detection and diagnosis of permanent-magnet DC motor based on parameter estimation and neural network [J]. IEEE Transaction on Industri- al Electronics, 2000, 47(5): 1021-1030.
  • 6Romesis C, Mathioudakis K. Setting up of a probabilistie neural network for sensor fault detection including operation with compo- nent faults [J]. J Eng Gas Turbines Power, 2003, 125(3): 634 -641.
  • 7Zhong Maiying, Zhou Donghua, Steven X Ding. On designing H ∞ fault detection filter for linear discrete time-varying syslems [J]. 1EEE Transaction on Automatic Control, 2010, 55 (7): 1689- 1695.
  • 8于百胜,黄文虎.基于强跟踪滤波器的在线故障诊断方法[J].振动.测试与诊断,2003,23(4):260-263. 被引量:4
  • 9颜明重,刘乾,朱大奇,汤天浩.水下机器人传感器自适应故障检测算法[J].华中科技大学学报(自然科学版),2009,37(S1):144-146. 被引量:1
  • 10马大中,张化光,冯健,刘金海.一种基于多传感器信息融合的故障诊断方法[J].智能系统学报,2009,4(1):72-75. 被引量:4

二级参考文献48

共引文献69

同被引文献28

  • 1Rajamani Doraiswami, Lahouari Cheded. A unified approach to de- tection and isolation of parametric faults using a Kalman filter re- sidual-based approach [J].Journal of the Franklin Institute, 2013, 350(5) : 938-965.
  • 2Roll Isermann. Model-based fault-detection and diagnosis-status and applications [J]. Annual Reviews in Control, 2005, 29 (1) : 71-85.
  • 3Doraiswami R, Cheded L. Kalman filter for parametric fault detec- tion: an internal model principle-based approach [J]. IET Control Theory and Applications, 2012, 6(5).. 715-725.
  • 4Zhang Ling, Zhang Xian-Da. An optimal filtering algorithm for systems with multiplicative/additive noises [J]. IEEE Signal Pro- cessing Letters, 2007,14(7).. 469-472.
  • 5Dionisio Bernal. Kalman filter damage detection in the presence of changing process and measurement noise [J]. Mechanical Systems and Signal Processing, 2013, 39(1-2): 361-371.
  • 6Steven M,Kay,罗鹏飞,张文明,等.统计信号处理基础--估计与检测理论[M].北京:电子工业出版社,2011:563-590.
  • 7Julier S J,LaViola J J J L.On Kalman filtering with nonlinear equality constraints[J].IEEE Transactions on Signal Processing,2007,55(6):2774-2784.
  • 8Kandepu R,Imsland L,Foss B.Constrained state estimation using the unscented Kalman filter[C].Ajaccio,France:16th Mediterranean Conference on Control and Automation,2008:1453-1458.
  • 9Simon D.Kalman filtering with state constraints:A survey of linear and nonlinear algorithm[J].IET Control Theory and Applications,2010,4(8):1303-1318.
  • 10Fu X,Jia Y,Du J,et al.Kalman Filtering with Multiple onlinearlinear Mixing State[C].49th IEEE Conference on Decision and Control ecember 15-17,2010Hilton Atlanta Atlanta,GA,Hotel,USA:340-345.

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部