期刊文献+

广义JGP-内射环

On General JGP-injective Rings
下载PDF
导出
摘要 称环R是右广义JGP-内射环(简称为G-JGP-内射环),如果对任意的0≠a∈J,存在0≠b∈R使得ab≠0且任意右R-同态f:abR→RR都可以扩张为R到R的同态.右广义JGP-内射环是右JGP-内射环的推广.在本文中研究并给出了G-JGP-内射环的一些刻画.推广了已知的相关结论. A ring R is called a right G-JGP- injective ring if for any 0 ≠α∈ J , there exists 0 ≠α∈R such that ab ≠0 and any right R-homomorphism from abR to R extends to one from R to R, which extends the case of right JGP-injective rings. In this article, we study and provide several characterizations of G-JGP- injective ring. Some known results are obtained as corollaries.
作者 董珺 魏杰
出处 《兰州工业高等专科学校学报》 2013年第1期56-59,共4页 Journal of Lanzhou Higher Polytechnical College
基金 国家自然科学基金资助项目(11101197) 兰州工业学院科技计划项目(10K-11)
关键词 JGP-内射环 G-JGP-内射环 Kasch环 半完全环 JGP-injective ring G-JGP-injective ring Kasch ring Semiperfect ring.
  • 相关文献

参考文献7

  • 1YOUSIF M F, ZHOU Y Q. Rings for which certain ele- ments have the principal extension property [ J ]. Algo- bra Colloq. , 2003, 10(4) : 501-512.
  • 2ANDERSON F W, FULLER K R. Rings and Categories of Modules[M ]. springer-verlag: New York, USA, 1974.
  • 3WISBAUER R. Foundations of module and ring theory [ M]. Gordon and Breach: London-Tokyo, 1991.
  • 4NICHOLSON W K, YOUSIF M F. Quasi-Frobenius rings [ M ]. Cambridge : Cambridge University Press, 2003.
  • 5CHEN J L, DING N Q. On general principally injective rings[J]. Comm. Algebra, 1999, 27(5) : 2097-2116.
  • 6CHEN M S. A note on perfect rings[ J]. J. Math. Re- search Expo. , 1993,13 (3) :372-374.
  • 7CAMILLO V, NICHOLSON W K. Cs modules with ACC or DCC essential subm odules[ J]. Comm. Alge- bra, 1991, 19(2) : 655-662.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部