摘要
称环R是右广义JGP-内射环(简称为G-JGP-内射环),如果对任意的0≠a∈J,存在0≠b∈R使得ab≠0且任意右R-同态f:abR→RR都可以扩张为R到R的同态.右广义JGP-内射环是右JGP-内射环的推广.在本文中研究并给出了G-JGP-内射环的一些刻画.推广了已知的相关结论.
A ring R is called a right G-JGP- injective ring if for any 0 ≠α∈ J , there exists 0 ≠α∈R such that ab ≠0 and any right R-homomorphism from abR to R extends to one from R to R, which extends the case of right JGP-injective rings. In this article, we study and provide several characterizations of G-JGP- injective ring. Some known results are obtained as corollaries.
出处
《兰州工业高等专科学校学报》
2013年第1期56-59,共4页
Journal of Lanzhou Higher Polytechnical College
基金
国家自然科学基金资助项目(11101197)
兰州工业学院科技计划项目(10K-11)