期刊文献+

BCH码的定义集分解及应用 被引量:2

Decomposition of Defining Sets of BCH Codes and Its Applications
下载PDF
导出
摘要 以分圆陪集理论和方法为基础,由二元码的Euclid正交性理论和四元码的Hermite正交性理论,分别引入二元BCH码和四元BCH码的定义集分解概念;再利用BCH码的定义集分解导出二元BCH码和四元BCH码的对偶码的正交分解。在此基础上,研究并解决了本原二元和四元BCH码的定义集分解;依据BCH码的定义集分解结论,构造出一些参数优良的纠缠辅助量子纠错码。定义集分解方法简化了由BCH码构造纠缠辅助量子纠错码的理论推导,改进了已有文献中确定最优纠缠比特数的算法,提供了一种计算最优纠缠比特数的新思路,为研究由循环码构造纠缠辅助量子纠错码问题提供了可借鉴的新理论和新方法。 Based on basic theory of cyclotomic coset, the concepts of decomposition of defining sets for bina ry and quaternary BCH codes are introduced respectively this decomposition of defining sets builds up a bridge among the Euclidean orthogonal decomposition of binary BCH codes and Hermitian orthogonal de composition of quaternary BCH codes. Then the orthogonal decomposition of the dual codes of binary and quaternary BCH codes is also presented. Furtherly, the decomposition of the defining sets of primitive bi- nary and quaternary BCH codes with given designed distances is well studied and solved. Applying the re- sults, some entanglement-assisted quantum codes with good parameters are constructed. The method pro- posed in this paper devised a new scheme in determining the optimal number of entangled bits, which can simplify the theoretical derivation in constructing entanglement-assisted quantum error correcting codes from classical BCH codes, and also be useful for studying general constructions of entanglement-assisted quantum error correcting codes from cyclic codes.
出处 《空军工程大学学报(自然科学版)》 CSCD 北大核心 2013年第2期86-89,共4页 Journal of Air Force Engineering University(Natural Science Edition)
基金 国家自然科学基金资助项目(11071255)
关键词 分圆陪集 BCH码 定义集 纠缠辅助 量子纠错码 cyclotomic coset BCH codes defining set entanglement-assisted quantum error correctingcodes
  • 相关文献

参考文献10

  • 1Gottesman D. Class of quantum error-correcting codes saturating the quantum hamming bound[J]. Phys rev A,1996,54: 1862-1868.
  • 2Calderbank A R, Rains E M, Shot P W,et al. Quan- tum error correction via codes over GF(4)[J] IEEE trans inform theory, 1998, 44: 1369-1387.
  • 3Brun T, Devetak I, Hsieh M H. Correcting quantum errors with entanglement[J]. Science, 2006, 314: 436-439.
  • 4Wilde M M, Brun T A. Optimal entanglement for- mulas for entanglement-assisted quantum coding[J]. Phys rev A, 2008,77.- 064302.
  • 5Huffman W C, Pless V. Fundamentals of error-cor- recting codes[M]. Cambridge: Cambridge university press, 2003.
  • 6Steane A. Enlargement of calderbank-shor-steane codes[J]. IEEE trans inform theory, 1999,45:2492- 2495.
  • 7Aly S A, Klappenecker A, Sarvepalli P K. On quan- tum and classical BCH codes[J]. IEEE trans inform theory, 2007, 53(3): 1183-1188.
  • 8Yang Liu, Youqian Feng, Ruihu Li. A Class of Im- primitive BCH codes and new quantum codes[J]. A- merican journal of engineering and technology re search, 2011, 11(12): 1792-1796.
  • 9R Li, F Zuo, Y Liu,et aL Hermitian dual containing BCH codes and construction of new quantum codes [J]. Quantuminfandcomp, 2013, 13(1):21-35.
  • 10Hsieh M H, Devetak I, Brun T A. General entangle- ment- assisted quantum error- correcting codes [J]. Phys rev A, 2007, 76: 062313.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部