摘要
根据薄壁杆件结构约束扭转的一致性理论,并在符拉索夫刚周边假定及库尔布鲁纳和哈丁对翘曲位移的假定下,考虑缀板的弯曲与剪切变形,得到带缀板的开口薄壁杆件的总势能及相应的拉格朗日函数。通过引入对偶变量,建立了缀板加强的开口薄壁杆件的哈密顿对偶体系,并采用两端边值问题的精细积分法求得高精度数值解。算例证明,本方法具有较高的精度,且计算过程简单清晰,为缀板加强的开口薄壁杆件的约束扭转分析提供了一种新的思路。
Based on the consistency theory of restrained torsion,Vlasov's rigid-frame assumption and Kollbrunner-Hajdin's longitudinal warping displacement assumption,with the bending and shear deformation of batten plates,the total potential energy of open thin-walled bar with batten plates and corresponding Lagrange function are obtained.By dual variables,a Hamiltonian dual system for the reinforced open thin-walled bar with batten plates is constituted.High accuracy numerical solutions can be obtained by a precise integration method of two end boundaries.This method has high precision.The calculating process is simple and clear.A new way of restrained torsional analysis of reinforced open thin-walled bar with batten plates is provided.
出处
《桂林理工大学学报》
CAS
北大核心
2013年第1期62-64,共3页
Journal of Guilin University of Technology
基金
河北省自然科学基金项目(E2011402057)
关键词
缀板加强的开口薄壁杆件
约束扭转分析
哈密顿对偶体系
精细积分法
reinforced open thin-walled bar with batten plates
restrained torsional analysis
Hamiltonian dual system
precise integration method