期刊文献+

一种组合粒子群和差分进化的多目标优化算法 被引量:8

Multi-objective Optimization Algorithm Composed of Particle Swarm Optimization and Differential Evolution
下载PDF
导出
摘要 在求解多目标优化问题时,针对粒子群优化算法容易陷入局部极值的现象,提出了一种组合粒子群和差分进化的多目标优化算法,使用粒子群优化算法和差分进化算法共同产生新粒子,通过一个判断因子控制两种算法的使用比例,并对粒子群优化算法的速度更新公式进行了改变,以提高搜索效率。通过三个测试函数进行了仿真,并同NSGA-Ⅱ、MOPSO-CD进行了比较。实验结果表明改进算法求得的Pareto解集收敛性和多样性好,并且算法稳定性高,运行速度快。 To deal with the phenomenon of particle swarm optimization algorithm being often trapped in local opti- ma for multi - objective optimization problems, a multi - objective optimization algorithm composed of particle swarm optimization and differential evolution was proposed. Both particle swarm optimization algorithm and differential evo- lution algorithm were used to create new particles. A controlling factor was used to control the proportion of the use of two algorithms. The velocity updating formula of particle swarm optimization algorithm was changed to improve the search efficiency. Three test functions were used to evaluate the performance of the proposed algorithm, and the pro- posed algorithm was compared with NSGA - II and MOPSO - CD. The experimental results show that the Pareto sets obtained by the proposed algorithm have good convergence and diversity performance, and the proposed algorithm is stable and fast.
出处 《计算机仿真》 CSCD 北大核心 2013年第4期313-316,共4页 Computer Simulation
基金 国家自然科学基金(61074076) 中国博士后科学基金(20090450119) 中国博士点新教师基金(20092304120017)
关键词 多目标优化 粒子群优化 差分进化 Multi - objective optimization Particle swarm optimization (PSO) Differential evolution
  • 相关文献

参考文献10

  • 1陶新民,刘玉,付丹丹,毕思明.混合变异克隆选择多目标优化算法[J].计算机仿真,2011,28(10):199-203. 被引量:7
  • 2J Kennedy, R C Eberhart. Particle swarm optimization[ C]. IEEE International Conference on Neural Networks. Piscataway, USA, 1995 : 1942 - 1948.
  • 3C A C Coel|o, G T Pulido, M S Lechuga. Handing multiple objec- tives with particle swarm optimization [ J ]. IEEE Transactions on Evolutionary Computation, 2004,8 ( 3 ) :256 - 279.
  • 4C R Raquel, P C Naval. An effective use of crowding distance in muhiobjective particle swarm optimization [ C ]. Proc of the 2005 Workshops on Genetic and Evolutionary Computation. Washington: ACM Press, 2005:257-264.
  • 5G G Yen, W F Leong. Dynamic multiple swarms in Multi -objec tire particle swarm optimization[ J]. IEEE Trans on Systems, Mal and Cybernetics, Part A, 2009,39(4) :890 -911.
  • 6R Storn, K Price. Differential evolution- a simple and efficientadaptive scheme for global optimization over continuous spaces [J]. Journal of Global Optimization, 1997,11 (4) : 341 -359.
  • 7T Robic, B Filipic. DEMO : Differential evolution for multiobjec- tive optimization[ C]. Proceedings of the 3rd International Confer- ence on Evolutionary Multi -Criterion Optimization. Berlin, Ger- many: Springer - Verlag, 2005:520 -533.
  • 8K Zielinski, R Laur. Differential evolution with adaptive parameter setting for multi - objective optimization [ C ]. Proceedings of the 2007 Congress on Evolutionary Computation, Piscataway, NJ, USA:IEEE, 2007:3585 -3592.
  • 9E Zitzler, K Deb, L Thiele. Comparison of multiobjective evolu- tionary algorithms : empirical results [ J ]. Evolutionary Computa- tion, 2000,8(2) :173 - 195.
  • 10K Deb, A Pratap, S Agarwal, T Meyarivan. A fast and elitist multiobjective genetic algorithm : NSGA - II [ J ]. IEEE Transac- tions on Evolutionary Computation, 2002,6 ( 2 ) : 182 - 197.

二级参考文献13

  • 1钟润添,龚海峰,李斌,庄镇泉.一种多目标优化的多概率模型分布估计算法[J].计算机仿真,2007,24(4):180-182. 被引量:6
  • 2H Ishibuchi, N Tsukamoto and Y Nojima. Evolutionary Many - Objective Optimization : A Short Review [ C ]. In : Proc. Of the 2008 Congress on Evolutionary Computation. Hong Kong: IEEE, 2008. 2424 - 2431.
  • 3Coello Coello CA. Evolutionary multi -objective optimization: A historical, view of the field [ J]. IEEE Computational Intelligence Magazine, 2006 - 1, ( 1 ) :28 -36.
  • 4C C Nareli, A C Carlos. Muhiobjective Optimization Using the Clonal Selection Principle [ J ]. Lecture Notes in Computer Sci- ence, 2003,27(23) :158 - 170.
  • 5J L Yan, J W Tie. A Novel Immune Algorithm doe Complex Opti- mization Problems[ C]. Proceedings of the 5th World Congress on Intelligent Control and Automation. Hang Zhou : IEEE, 2004. 2279 - 2283.
  • 6C A Coollo Coello, N C Cortes. Solving multi - objective optimiza- tion problem using an artificial immune system [ J ]. Genetic Pro- gramming and Evolvable Machines. 2005 -6(2) :163 - 190.
  • 7M GGong, L C Jiao, H F Du, L F Bo. Multi -Objective immune algorithm with Pareto - optimal neighbor - based selection [ J ]. Evolutionary Computation, 2008,16 (2) : 225 - 255.
  • 8K Deb, M Mohan, S Mishra. Evaluating the ε - domination based multi - objective evolutionary algorithm for a quick computation of Paret0 - optimal solutions [ J ]. Evolutionary Computation, 2005, 13(4) : 501 -525.
  • 9Deb K, et al. A fast and elitist multi - objective genetic algorithm: NSGA -Ⅱ[ J]. IEEE Trans on Evolutionary Computation, 2002,6 (2) :1822197.
  • 10M R Chen, Y Z Lu. A novel elitist multiobjective optimization al- gorithm: multi - objective extremal optimization [ J ]. European Journal of Operational Research, 2008,188 (3) : 637 - 651.

共引文献6

同被引文献89

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部