期刊文献+

组织工程软骨修复软骨缺损区域后的力学特性分析 被引量:2

Mechanical properties of instantly repaired articular cartilage defects by tissue engineering
原文传递
导出
摘要 目的利用组织工程技术建立体外软骨缺损实验模型,研究修复区人工软骨和宿主软骨的力学特性。方法采用一种琼脂糖凝胶作为人工软骨,制作猪软骨深层缺损,在缺损处仿临床植入人工软骨,用生物胶黏接,建立组织工程修复膝关节软骨缺损的体外模型;在压缩载荷作用下,通过数字图像相关技术研究组织工程软骨植入缺损后修复区即刻力学行为。结果压缩过程中界面处没有出现开裂现象,压缩分别为软骨层厚度的3.5%、5.6%、7.04%和9.0%时获得了修复区中间层应变分布图和应变变化曲线。压缩量从3.5%增加到9%时,在垂直软骨面方向上宿主软骨最大压应变增加75.9%,人工软骨最大拉应变增加226.99%;在平行软骨表面方向,交界面处最大拉应变增加116.9%,增加量远高于宿主软骨区和人工软骨区;对于修复区剪应变,随着压缩量增加交界处剪应变方向发生相反的改变。结论软骨组织工程修复缺损效果有很大的不确定性,这与修复区的力学环境有关。组织工程软骨植入缺损后,修复区受到复杂应变状态,随着压缩量增加,界面处、宿主软骨、人工软骨都发生较大的应变变化,界面处垂直软骨面方向的应变由压应变可转化为拉应变,平行软骨表面方向的拉应变有显著增加,交界处剪应变方向甚至发生了相反的改变,而且剪应力数值迅速增加。这种复杂应变状态造成修复区细胞力学环境的较大变化,还可能引起界面的开裂,影响缺损修复过程,这些力学环境变化应受到临床治疗的重视。 Objective To investigate the mechanical properties of both artificial cartilage and host cartilage by es- tablishing the in vitro model of tissue engineered cartilage for repairing defects. Methods The agarose gel as an artificial cartilage was implanted in a deep cartilage defect connected with biological adhesive to set up the in vitro model of tissue engineered articular cartilage defects. Under the compression load, the instant mechanical behav- ior of the repair area was studied using the digital image correlation technology. Results There was no cracking phenomenon occurred at the interface during the compression process. The Strain distributions at middle layer of the repair area were obtained when the cartilage thickness appeared changes with 3.5%, 5.6%, 7.04% and 9.0% by the compression, respectively. When the compressing change increased from 3.5% to 9%, the maxi- mum compressive strain of host cartilage was increased by 75.9%, and the maximum tensile strain of artificial cartilage was increased by 226.99% in the vertical direction of cartilage surface. In the direction parallel with carti- lage surface, the maximum tensile strain at the interface was increased by 116.9%, and the increment was far more than that at the host cartilage area and artificial cartilage area. For shear strain at the repair area, the direc- tion of shear strain at the interface changed oppositely with the compression increasing. Conclusions The repair effect of tissue engineered cartilage was uncertain due to the mechanical environment of the repair area. After the tissue engineered cartilage was implanted in the defect, the repair area was under the influence of complex strain states. The strains changed greatly at the interface both with the host cartilage and artificial cartilage as the com- pression increasing. The strain in the vertical direction of cartilage surface at the interface might change from compressive stain to tensile strain, which was significantly increased in the direction parallel with cartilage sur- face. The strain direction at the interface could even be changed oppositely, and the shear strain appeared rapid- ly increase. The complex strain states lead to such great changes in mechanical environment of the defect area, and may cause cracking at the interface, and even further affect the repair process. Therefore, attention should be given to this complex mechanical environment during cartilage defect repair process in clinical treatment.
出处 《医用生物力学》 EI CAS CSCD 北大核心 2013年第2期195-200,共6页 Journal of Medical Biomechanics
基金 国家自然科学基金资助项目(11172208 31000422)
关键词 组织工程 软骨缺损 压缩载荷 力学特性 数字图像相关 Tissue engineering Cartilage defect Compression load Mechanical properties Digital image correlation
  • 相关文献

参考文献15

  • 1Ahmed TA, Hincke MT. Strategies for articular cartilage lesion repair and functional restoration [ J]. Tissue Eng Part B Rev, 2010, 16(3) : 305-329.
  • 2姜宗来,樊瑜波.生物力学-从基础到前言[M].北京:科学出版社,2010:308-310.
  • 3Moran C J, Shannon F J, Barry FP, et al. Translation of science to surgery: Linking emerging concepts in biological cartilage repair to surgical intervention [ J ]. J Bone Joint Surg Br, 2010, 92(9) :1195-1202.
  • 4Farr J, Cole B, Dhawan A, et al. Clinical cartilage restoration: Evolution and overview [ J ]. Clin Orthop Relat Res, 2011, 469(10) : 2696-2705.
  • 5Wong M, Carter DR. Articular cartilage functional histomorphology and mechanobiology: A research perspective [J ].Bono, 2003, 33(1): 1-13.
  • 6毛昭宪.骨科生物力学暨力学生物学(第3版)[M].济南:山东科学技术出版社,2009:16-20.
  • 7Guilak F, Butler DL, Goldstein SA. Functional tissue engineering [ M]. Germany: Springer, 2004: 332-400.
  • 8戴尅戎.骨与关节的力学生物学研究[J].医用生物力学,2009,24(S1):1-1. 被引量:2
  • 9侯志超,孙剑,甄俊平,卫小春.关节软骨损伤修复的MRI评价[J].国际医学放射学杂志,2011,34(5):456-460. 被引量:17
  • 10张述卿,刘海英,董黎敏,张春秋.组织工程修复关节软骨缺损的力学环境研究[J].医用生物力学,2009,24(S1):142-143. 被引量:1

二级参考文献81

共引文献52

同被引文献27

  • 1张东升,鲁成林.人牙本质断裂力学行为的研究[J].中华口腔医学杂志,2007,42(12):733-736. 被引量:7
  • 2Misra S, Macura K, Ramesh K, et aL The importance of organ geometry and boundary constraints for planning of medical interventions [J]. Med Eng Phys, 2009, 31 (2): 195-206.
  • 3Abolhassani N, Patel R, Moallem M. Needle insertion into soft tissue= Asurvey [J]. Med Eng Phys, 2007, 29(4):413-431.
  • 4Alterovitz R, Goldberg K, Okamura A. Planning for steer- able bevel-tip needle insertion through 2D soft tissue with obstacles [ C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona: IEEE, 2005 : 1640-1645.
  • 5Mahvash M, Dupont PE. Fast needle insertion to minimize tissue deformation and damage [ C ]// Proceedings of the 2009 IEEE International Conference on Robotics and Auto- mation. Kobe: IEEE, 2009: 3097-3102.
  • 6Mahvash M, Dupont PE. Mechanics of dynamic needle insertion into a biological material [ J]. IEEE Trans BiomedEng, 2010, 57(4) : 934-943.
  • 7Fazal I, Karsiti MN. Needle insertion simulation forces v/s experimental forces for haptic feedback device [ C]//Pro- ceedings of 2009 IEEE Student Conference on Research and Development. Serdang: IEEE, 2009: 128-131.
  • 8O' Leary MD, Simone C, Washio T, et aL Robotic needle insertion: Effects of friction and needle geometry [ C ]// Proceedings of the 2003 IEEE International Conference on Robotics and Automation. Taipei: IEEE, 2003 : 1772-1780.
  • 9Misra S, Reed KB, Douglas AS, et al. Needle-tissue insertion forces for bevel-tip steerable needle[ C]//Pro- ceedings of the 2nd Bienial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Scottsdale: IEEE, 2008: 224-231.
  • 10Heverly M, Dupont P, Triedman J. Trajectory optimization for dynamic needle insertion [ C]// Proceedings of the 2005 IEEE International Conference on Robotics and Auto- mation. Barcelona= IEEE, 2005:1658-1663.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部