期刊文献+

基于盲源分离去噪和HHT的旋转机械故障诊断 被引量:4

The Fault Diagnosis of Rotating Machine Based on Blind Source Separation De-noising and Hilbert-Huang Transform
下载PDF
导出
摘要 在利用Hilbert—Huang变换对旋转机械的故障信号进行特征提取时,传感器所获得的信号往往受到不同类型的噪声干扰,而忽略噪声的影响常常产生很差的分析效果。为克服此不足,结合盲源分离,提出了一种解决HHT分析中模态裂解现象的方法,即基于快速独立分量分析消噪的HHT分析方法。仿真与实例结果表明,该方法能有效抑制HHT过程中的模态裂解现象,有效提取信号的特征频率,进而实现旋转机械故障诊断。 In the characteristics extraction of the rotating machine with Hilbert-Huang transform, the vibration signals from the sensors mounted on the machine are generally suffered by the disturbance from different types of noise. The neglect of the noise generally causes worse effect of analysis. In order to overcome this deficiency, by means of combining with the blind source separation, a new algorithm, which is named Hilbert-Huang transform based on the fast independent component analysis, is proposed to resolve the mode fission. The simulation and case analysis show that the proposed method is very effective to waken the phenomenon, and to extract the characteristic frequency of the signal, further to realize the fault diagnosis of rotating machinery.
作者 孟宗 顾海燕
出处 《计量学报》 CSCD 北大核心 2013年第3期242-246,共5页 Acta Metrologica Sinica
基金 基金项目:国家自然科学基金(51105323) 河北省自然科学基金(E2012203166,F2009000500)
关键词 计量学 故障诊断 盲源分离 HILBERT-HUANG变换 旋转机械 Metrology Fault diagnosis Blind source separation Hilbert-Huang transform Rotating machine
  • 相关文献

参考文献10

二级参考文献48

共引文献165

同被引文献40

  • 1张亢,程军圣,杨宇.基于局部均值分解与形态学分形维数的滚动轴承故障诊断方法[J].振动与冲击,2013,32(9):90-94. 被引量:19
  • 2胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 3郝志华,马孝江,王奉涛.非平稳信号的盲源分离在机械故障诊断中的应用[J].振动与冲击,2006,25(1):110-114. 被引量:15
  • 4何旭.经验模式分解的研究及其在故障诊断中的应用[D].上海交通大学,2004.
  • 5Huang N E,Shen Z,Long S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society London A,1998,454(1971):903-995.
  • 6Chen W T,Wang Z Z,Xie H B,et al.Characterization of surface EMG signal based on fuzzy entropy[J].IEEE Transactions on Neural System and Rehabilitation Engineering,2007,15(2):266-272.
  • 7Chen W T,Zhuang J,Yu W X,et al.Measuring complexity using FuzzyEn,ApEn,and SampEn[J].Medical Engineering and Physics,2009,31(1):61-68.
  • 8Yuan S F,Chu F L.Support vector machines-based fault diagnosis for turbo-pump rotor[J].Mechanical Systems and Signal Processing,2006,20(4):939-952.
  • 9Rybezyfiski J. The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features [ J ]. Mechanical Systems and Signal Processing, 2011, 25(2): 521-536.
  • 10Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [ J ]. Proceedings of the Royal Society of London, 1998, 454 ( 1 ) : 903 - 995.

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部