期刊文献+

具有快速收敛和自适应逃逸功能的粒子群优化算法 被引量:14

Particle swarm optimization algorithm with fast convergence and adaptive escape
下载PDF
导出
摘要 为了克服标准粒子群优化算法(PSO)后期收敛速度慢、容易陷入局部最优等缺点,借鉴人工蜂群算法的思想,提出了一种提高收敛速度并且带有自适应逃逸功能的粒子群优化算法(FAPSO)。算法中每进化一次粒子搜索两次:一次全局搜索,一次局部搜索。当粒子陷入局部最优时,通过逃逸功能使粒子重新搜索。8个经典基准测试函数仿真结果表明,改进的粒子群优化算法在收敛速度和寻优精度上均有提高,相对于目前常用的改进粒子群优化算法如CLPSO等,t检验结果说明,新算法具有明显的优势。 In order to overcome the drawbacks of Particle Swarm Optimization (PSO) that converges slowly at the last stage and easily fails into local minima, this paper proposed a new PSO algorithm with convergence acceleration and adaptive escape (FAPSO) inspired by the Artificial Bee Colony (ABC) algorithm. For each particle, FAPSO conducted two search operations. One was global search and the other was local search. When a particle got stuck, the adaptive escape operator was used to search the particle again. Experiments were conducted on eight classical benchmark functions. The simulation results demonstrate that the proposed approach improves the convergence rate and solution accuracy, when compared with some recentlv nrot^osed PSO versions, such as CLPSO. Besides. the resuhs of t-test show clear superiority.
出处 《计算机应用》 CSCD 北大核心 2013年第5期1308-1312,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61261039) 江西省自然科学基金资助项目(20122BAB201043)
关键词 粒子群优化算法 全局搜索 局部搜索 快速收敛 自适应逃逸 Particle Swarm Optimization (PSO) global search local search fast convergence adaptive escape
  • 相关文献

参考文献18

二级参考文献79

共引文献93

同被引文献134

  • 1单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:202
  • 2陈联寿.热带气旋研究和业务预报技术的发展[J].应用气象学报,2006,17(6):672-681. 被引量:159
  • 3陈建萍,周伟灿,尹洁.国内外热带气旋强度变化研究现状[J].气象与减灾研究,2007,30(3):40-47. 被引量:12
  • 4贾杰,陈剑,常桂然,赵林亮,王光兴.无线传感器网络中基于遗传算法的优化覆盖机制[J].控制与决策,2007,22(11):1289-1292. 被引量:56
  • 5SUN Hui, LI Jun, WEN Lili, et al. A hybird particle swarm optimization for wireless sensor network coverage problem [J]. Sensor Letters, 2012, 10 (8): 1744-1750.
  • 6WANG Hui, WU Zhijian, S Rahnamayan, et al. Enhandng particle swarm optimization using generalized opposition-based learning [J]. Irdormation Sciences, 2011, 181 (20): 4699-4714.
  • 7Huang Han, Qin Hu, Hao Zhifeng, et al. Example-based learning particle swarm optimization for continuous optimization [J]. Information Sciences, 2012, 182 (1): 125-138.
  • 8Zhao Jia, Lu Li, Sun Hui, et ak A novel two sub-swarms exchange particleswarm optimization based on multi-phases []J //IEEE In- ternational Conference on Granular Computing, 2010.
  • 9Hui Sun, Jun Li, Wen Lili, et al. A hybird particle swarm opti- mization for wireless sensor network coverage problem [J]. Sensor Letters, 2012, 10 (8): 1744-1750.
  • 10WANG Hui, SUN Hui, LI Changhe, et al. Diversity en- hanced particle swarm optimization with neighborhood search [J]. Information Sciences, 2013, 223: 119-135.

引证文献14

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部