摘要
In order to analyze the complex chemical kinetic mechanism systematically and find out the redundant species and reactions, a numerical platform for mechanism analysis and simplification is established basing on Path Flux Analysis (PFA). It is used to reduce a detailed mechanism for flame inhibited by phosphorus containing compounds, a reduced mechanism with 65 species and 335 reactions is obtained. The detailed and reduced mechanism are both used to calculate the freely-propagating premix C3H8/air flame with different dimethyl methylphosphonate doped over a wide range of equivalence ratios. The concentration distributions of free radicals and major species are compared, and the results under two different mechanisms agree well. The laminar flame speed obtained by the two mechanisms also matches well, with the maximum relative error introduces as a small value of 1.7%. On the basis of the reduced mechanism validation, the correlativity analysis is conducted between flame speed and flee radical concentrations, which can provide information for target species selection in the further mechanism reduction. By analyzing the species and reactions fluxes, the species and reaction paths which contribute the flame inhibition significantly are determined.
In order to analyze the complex chemical kinetic mechanism systematically and find out the redundant species and reactions, a numerical platform for mechanism analysis and simplification is established basing on Path Flux Analysis (PFA). It is used to reduce a detailed mechanism for flame inhibited by phosphorus containing compounds, a reduced mechanism with 65 species and 335 reactions is obtained. The detailed and reduced mechanism are both used to calculate the freely-propagating premix C3H8 /air flame with different dimethyl methylphosphonate doped over a wide range of equivalence ratios. The concentration distributions of free radicals and major species are compared, and the results under two different mechanisms agree well. The laminar flame speed obtained by the two mechanisms also matches well, with the maximum relative error introduces as a small value of 1.7%. On the basis of the reduced mechanism validation, the correlativity analysis is conducted between flame speed and free radical concentrations, which can provide information for target species selection in the further mechanism reduction. By analyzing the species and reactions fluxes, the species and reaction paths which contribute the flame inhibition significantly are determined.
基金
Supported by the National Natural Science Foundation of China (51176181), the National Basic Research Program of China (2012CB719704), and the Research Fund for the Doctoral Program of Higher Education (20123402110047).