期刊文献+

运用ADE算法进行Wiener模型辨识 被引量:2

Adaptive Differential Evolution Identification of Wiener Model
原文传递
导出
摘要 DE算法是一类基于种群的启发式全局搜索技术,该算法原理简单,控制参数少,鲁棒性强,具有良好的优化性能。首先利用DE算法对Wiener模型参数进行辨识,分析了算法中变异率F对辨识过程中的全局并行搜索能力和收敛速度的影响;其次运用一种自适应变异差分进化算法(ADE)进行Wiener模型参数辨识,该算法在初期变异率较高,种群具有多样性,避免过早收敛于局部最优解;在进化过程中,变异率逐渐变小,优良个体得以保留,避免最优解遭到破坏。运用ADE算法对Wiener模型的数值仿真结果表明了ADE算法在参数辨识问题中的有效性,以及较PSO算法更强的非线性系统辨识能力。与一般的DE算法相比较,ADE算法辨识到全局最优解的精度和概率有较大提高,对算法参数的敏感性降低。 DE algorithm is a population-based heuristic global search technology. The algorithm has simple principle, fewer control parameters, strong robustness, and good optimization performance. Firstly, differential evolution algorithm for parameters identification of Wiener model was used. The influence of mutation rate F on global parallel search ability and convergence in the process of identification were analyzed. Secondly, an adaptive differential evolution algorithm (ADE) was used to identify parameters of Wiener model. The algorithm keeps individual diversity to avoid premature convergence during the early stage and reduces the mutation rate gradually so as not to damage the optimal solution obtained during the later stage of the search process. Finally, numerical simulation was performed on Wiener model. The results show that ADE algorithm has more effectiveness in parameter identification problem than PSO. On the other hand, compared with the general DE algorithm, ADE algorithm identifies the parameters of Wiener model with higher precision as well as shows lower sensitivity to the al^zorithmic parameters.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第5期969-974,982,共7页 Journal of System Simulation
基金 国家自然科学基金项目(21206053 21276111) 博士后基金项目(1101021B 2012M511678)
关键词 差分进化算法 自适应变异 参数辨识 WIENER模型 differential evolution adaptive mutation parameter identification wiener model
  • 相关文献

参考文献16

  • 1张艳,李少远,王笑波,周坚刚.基于粒子群优化的Wiener模型辨识与实例研究[J].控制理论与应用,2006,23(6):991-995. 被引量:15
  • 2Hatanaka T, Uosaki K, Koga M. Evolutionary Computation Approach to Wiener Model Identification [C]// Proc. of IEEE Congress on Evolutionary Computation, Honolulu, HI, USA. USA: IEEE, 2002: 914-919.
  • 3沈佳宁,孙俊,须文波.运用QPSO算法进行系统辨识的研究[J].计算机工程与应用,2009,45(9):67-70. 被引量:15
  • 4Storn R, Price K. Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces [J]. Journal of Global Optimization (S1573-2916), 1997, 11(4): 341-359.
  • 5刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 6王凤蕊,王文宏.解决位置管理问题的混沌混合差分进化算法[J].系统仿真学报,2009,21(6):1609-1614. 被引量:2
  • 7Zou DX, Liu HK, Gao LQ, Li S. A Novel Modified Differential Evolution Algorithm for Constrained Optimization Problems [J]. Computers & Mathematics with Applications (S0898-1221), 2011, 61(6): 1608-1623.
  • 8Dhahri H, Alimi A M. The Modified Differential Evolution and the RBF (MDE-RBF) Neural Network for Time Series Prediction [C]// Proc of the International Joint Conference on Neural Networks, Vancouver, USA, 2006. USA: Erlbaum, 2006: 2938-2943.
  • 9Zhang Renqian, Ding Jianxun. Non-Linear Optimal Control of Manufacturing Systems Based on Modified Differential Evolution [C]//Proc. of the IMACS on Computational Engineering in System Applications, Beijing, China, 2006. Beijing, China: Tsinghua University Press, 2006: 1797-1803.
  • 10Dai CH, Chen WR, Zhu YF. Seeker Optimization Algorithm for Digital IIR Filter Design [J]. IEEE Trans on Industrial Electronics (S0278-0046), 2010, 57(5): 1710-1718.

二级参考文献170

共引文献430

同被引文献25

  • 1刘毅,王海清.采用最小二乘支持向量机的青霉素发酵过程建模研究[J].生物工程学报,2006,22(1):144-149. 被引量:27
  • 2陶丹,马华东,刘亮.基于虚拟势场的有向传感器网络覆盖增强算法[J].软件学报,2007,18(5):1152-1163. 被引量:93
  • 3刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 4TIPPING M E.Sparse Bayesian learning and the relevance vector machine[J].The Journal of Machine Learning Research,2001 (1):211-244.
  • 5HONG Jeong-jin,ZHANG Jie.Quality prediction for a fed-batch fermentation process using multi-block PLS[J].Springer Proceeding in Physics,2010,135:155-162.
  • 6谷雨,周波,戴燕翎.基于支持向量机与移动Agent的入侵检测系统模型[J].云南民族大学学报(自然科学版),2008,17(1):68-71. 被引量:4
  • 7Wang Pu,Dai Rui,Akyildiz I F.A differential coding-based scheduling framework for wireless multimedia sensor networks[J].IEEE Trans on Multimedia,2013,15(3):684-697.
  • 8Deshmukh C S,Dhopte S V.A survey on video coding in wireless multimedia sensor network environment using compressed sensingtechnique[J].International Journal of Computer Science and Applications,2013,6(2):13-17.
  • 9Torkestani J A.An adaptive energy-efficient area coverage algorithm for wireless sensor networks[J].Ad hoc Networks,2013,11(6):1655-1666.
  • 10Ma Huadong,Liu Yonghe.On coverage problems of directional sensor networks[J].Lecture Notes in Computer Science:Mobile Ad hoc and Sensor Networks,2005,3794:721-731.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部