期刊文献+

混合CS算法的DE算法 被引量:20

Hybrid optimization algorithm of Cuckoo Search and DE
下载PDF
导出
摘要 为解决基本差分进化算法的缺陷,利用布谷鸟搜索(CS)算法寻优能力强的优点,在DE每次完成选择操作后,不直接进入下一次迭代,而是引入CS算法,继续进行搜索,这样就增加了粒子的搜索活力,从而得到一种新的差分进化算法。经过对6个标准测试函数的大量实验计算表明,该算法能有效克服DE算法的缺陷,使寻优精度有较大改进。将算法应用于求解非线性方程组问题,给出了数值算例。 In order to solve the basic differential evolutionary algorithm's drawback, taking advantage of Cuckoo Search(CS) algorithm optimization capability, after finishing the selection operation in DE, going to the next iteration is indirect, the CS algorithm is introduced to continue the search, the particle search' s activity is improved and a new DE algorithm is got. Massive experiments of six standard benchmark functions suggest that this novel hybrid algorithm effectively overcomes the disadvantages of DE algorithm. It produces a conspicuous effect, which results in satisfactory outcome in experiments. The CS-DE method is applied to solving nonlinear equations and the numerical examples are proposed.
作者 李明 曹德欣
出处 《计算机工程与应用》 CSCD 2013年第9期57-60,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.70901073) 中央高校基本科研专项基金项目(No.JGK101676)
关键词 差分进化算法 布谷鸟搜索算法 混合算法 非线性方程组 differential evolution algorithm Cuckoo Search(CS) algorithm hybrid algorithm nonlinear equations
  • 相关文献

参考文献18

  • 1Storn R,Price K.Differential evolution a simple and effi- cient adaptive scheme for global optimization over continu- ous space[R].International Computer Science Institute, Berk- ley, 1995.
  • 2Store R,Price K.Differential evolution a simple and effi- cient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997,11 (4) : 341-359.
  • 3Ursem R K, Vadstrup EParameter identification of induc- tion motors using differential evolution[C]//Proceedings of the Fifth Congress on Evolutionary Computation Confer- ence.Canberra: [s.n.], 2003.
  • 4Chiou J P, Wang F S.A hybrid method of differential evolu- tion with application to optimal control problems of a bio- process systerm[C]//Proceedings of IEEE International Con- ference on Evolutionary Computation.New York:IEEE, 1988: 627-632.
  • 5Vesterstrom J, Thomsen R A.A comparative study of differ- ential evolution, particle swarm optimization, and evolution- ary algorithms on numerical benchmark problems[C]//Pro- ceedings of Congress on Evolutionary Computation.Piscat- away:IEEE Press,2004:1980-1987.
  • 6Price K V.Differential evolution vs the functions of second ICEO[C]//IEEE International Conference on Evolutionary Computation.Indiannupolis: IEEE, 1997 153-157.
  • 7Holland J H.Adaptation in natural and artifical systems[M]. Ann Arbor:Michigan Press, 1975 : 1-50.
  • 8Yang Q W,Jiang J P,Qu z X,et al.Improving genetic algo- rithms by using logic operation[J].Control and Decision, 2002,15(4).
  • 9Yang X S, Deb S.Cuckoo search via Levy flight[C]//Pro- ceedings of World Congress on Nature & Biologically Inspired Computing.India: IEEE Publications, 2009: 210-214.
  • 10Yang X S, Deb S.Engineering optimization by cuckoo search[J].Int J Math Modeling & Num Optimization,2010, 1(4) :330-343.

二级参考文献7

共引文献19

同被引文献183

引证文献20

二级引证文献283

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部