期刊文献+

小波和KPD的图像压缩方法

Image coding based on wavelet and KPD
下载PDF
导出
摘要 介绍了KPD的基本理论,提出了一种基于小波和KPD的图像编码方法。对图像进行Kronecker积分解,达到第一次压缩的目的。根据Kronecker积分解后的各个分解小块固有的性质,把这些小块分成两类:高频信息和低频信息。对于低频信息选取SPECK小波编码方式,而对于高频信息先进行小波分解,再对其中的混频信息进行编码,从而达到再次压缩的目的。实验证明该算法具有计算简便,压缩比较高的特点。 The basic theory of KPD is introduced, and an image coding method based on wavelet and KPD is proposed. The image is decomposed by the Kronecker product decomposition, and the aim of the first compression will be achieved. According to the character of each small decomposed block, these small blocks will be classified into high frequency information and low frequency information. For the low frequency information, the method of SPECK code is selected, while for the high frequency information, the wavelet decomposition is used firstly, and then the maxing frequency information is coded, so the aim of recom- pression will be reached. The experiment results show that this approach is simple and effective.
出处 《计算机工程与应用》 CSCD 2013年第9期160-163,共4页 Computer Engineering and Applications
关键词 Kronecker积分解(KPD) 小波变换 图像压缩 Kronecker Product Decomposition(KPD) wavelet transform image compression
  • 相关文献

参考文献10

  • 1Ortiz G, Gubernatis J E, Knill E, et al.Quantum algorithms for fermionic simulation[EB/OL].[2011-07-19].http ://arxiv.or-g/ PS-cache/cond-mat/pdf/0012334.pdf.
  • 2Kamm J,Bagy J G.Kronecker product and SVD approxima- tions in image restoration[J].Linear Algebra and Its Applica- tions, 1998. 284 : 177-192.
  • 3Duarte M F, Baraniuk R G.Kronecker product matrices for compressive sensing[C]//IEEE Acoustics, Speech, and Signal 2010:3650-3653. International Conference on Processing.[S.I.]: IEEE Press,.
  • 4Canta G R,Poggi G.Kronecker-product gain-shape vector quan- tization for multispectral and hyperspectral image coding[J]. IEEE Transactions on Image Processing, 1998,7(5):668-678.
  • 5van Loan C F, Pitsianis N.Approximation with Kronecker products,CTC92TR109[R].New York:Cornell University, 1992.
  • 6许君一,孙伟,齐东旭.矩阵Kronecker乘积及其应用[J].计算机辅助设计与图形学学报,2003,15(4):377-388. 被引量:11
  • 7Pearlman W A, Islam A,Nagaraj N,et al.Efficient,low-com- plexity image coding with a set-partitioning embedded block coder[J].IEEE Transactions on Circuits and Systems for Video Technology,2004, 14( 11 ) : 1-23.
  • 8胡乡峰,卫金茂.基于奇异值分解(SVD)的图像压缩[J].东北师大学报(自然科学版),2006,38(3):36-39. 被引量:17
  • 9张成楠.基于奇异值分解图像压缩算法的研究[J].山西电子技术,2010(4):79-80. 被引量:6
  • 10Kalman D.A singularly valuable decomposition: the SVD of a matrix[EB/OL]. [2011-07-19].http ://www.math.umn.edu/ -lerman/math5467/svd.pdf.

二级参考文献34

  • 1成礼智,蒋增荣.带状(块)Toeplitz方程组的快速并行算法[J].数值计算与计算机应用,1994,15(1):44-51. 被引量:8
  • 2方云兰,郑慧娆,胡晓.TOEPLITZ-块矩阵的快速QR分解算法及其并行实现[J].武汉大学学报(自然科学版),1995,41(3):287-293. 被引量:3
  • 3胡乡峰,卫金茂.基于奇异值分解(SVD)的图像压缩[J].东北师大学报(自然科学版),2006,38(3):36-39. 被引量:17
  • 4顾本立,葛云,吕建,张登峰.图象恢复在工业CT中的应用[J].CT理论与应用研究(中英文),1996,5(4):1-5. 被引量:3
  • 5斯图尔特GW.矩阵计算引论[M].上海:上海科学技术出版社,1980..
  • 6冯玉氓,邵玉明,张星.数据图像压缩编码[M].北京:中国铁道出版社,1993.
  • 7刘榴娣,刘明奇.实用数字图像处理[M].北京:北京理工大学出版社,2001.
  • 8BOULGOURIS N V,TZOVARAS D,STRINNTZIS M G.Lossless image compression based on optimal prediction,adaptive lifting,and conditional arithmetic coding[J].IEEE Transactions on Image Processing,2001,10(1):1-14.
  • 9AMIR,WILLIAM A P.An image multire solution representation for lossless and lossy compression[J].IEEE Trans Image Processing,1996,5(9):1 303-1 310.
  • 10CHEN,KWONG SAM,FENG JJFU.A new compression scheme for color-quantized image[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(10):36-39.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部