期刊文献+

QPSO优化的改进CLARANS聚类算法 被引量:3

Improved CLARANS clustering algorithm based on QPSO algorithm
下载PDF
导出
摘要 CLARANS算法是一种有效且广泛应用的聚类算法,适合发现任意形状的聚类结果,但CLARANS算法在搜索过程中容易陷入局部最优解,从而忽略全局最优解。为了避免CLARANS算法在搜索中心点时易受局部最优解的影响,提出一种将CLARANS算法中的邻接点作为QPSO算法的量子粒子,结点代价作为适应度函数对其进行寻优的改进CLARANS算法。将该改进算法应用于UCI数据集,结果表明该算法聚类效果好、收敛快,算法的稳定性、收敛性及寻优能力都有很大提高。 CLARANS algorithm is an efficient and effective and wide application clustering algorithm. It is applicable to locate objects with polygon shape. CLARANS often gets stuck at a locally optimum configuration, ignores the global optimum solution. This paper presents an improved CLARANS algorithm based on the QPSO algorithm in order to avoid local optimum. The improved method adopts the quantum particle as the neighbor and takes the node cost as the fitness function. The improved CLARANS algorithm is applied to the UCI data set. The simulation experiment results show that it can improve the clustering performance.
作者 段明秀
出处 《计算机工程与应用》 CSCD 2013年第9期168-170,179,共4页 Computer Engineering and Applications
基金 湖南省教育厅基金资助项目(No.11C1025)
关键词 量子粒子群算法 基于随机选择的聚类算法(CLARANS)算法 结点代价 聚类 适应度函数 Quantum Particle Swarm Optimization (QPSO) algorithm Clustering Algorithm based on Randomized Search(CLARANS) algorithm node cost clustering fitness function
  • 相关文献

参考文献8

二级参考文献42

  • 1George Karypis,Eui-Hong (Sam) Han,Vipin Kumar.CHAMELEON:A hierarchical clustering algorithm using dynamic modeling[J].Computer,1999,32:68-75.
  • 2Ng Raymond T,Jiawei Han.Efficient and Effective Clustering Methods for Spatial Data Mining[C]// In:Proceedings of the 20th Very Large Databases Conference (VLDB 94),Santiago,Chile,1994:144-155.
  • 3Maulik L,Bandyopadhyay S.Genetic algorithm:based clustering technique[J].Pattern Recognition,2000,33:1455-1465.
  • 4http://www.scilab.org.
  • 5ANTHONY K H T,JEAN H,HAN Jia-wei.Spatial clustering in the presence of obstacles[C] //Proc of 2001 Int1 Conf on Data Engineering.Washington D C:IEEE Press,2001:359-367.
  • 6ZAIANE O R,LEE Chi-hoon.Clustering spatial data when facing physical constraints[C] //Proc of the IEEE International Conf on Data Mining.Washington D C:IEEE Press,2002:737-740.
  • 7Wu Y C, Lee Y S, Yang J C. Robust and efficient multiclass SVM models for phrase pattern recognition[J]. Pattern Recognition, 2008, 41 (9): 2874-2889.
  • 8Osowski S, Siroic R, Markiewicz T, et al. Application of support vector machine and genetic algorithm for improved blood cell recognition[J]. Instrumentation and Measurement, 2009, 58(7): 2159-2168.
  • 9HUANG Cheng-lung, DUN Jian-fan. A distributed PSO-SVM hybrid system with feature selection and parameter optimization[J]. Applied Soft Computing, 2008, 8(4): 1381-1391.
  • 10ZHOU Lin-cheng, YANG Hui-zhong, LIU QPSO-based hyper-parameters selection for Chun-bo. LS-SVM regression[C]//Proceedings of Fourth International Conference on Natural Computation. Jinan: IEEE, 2008: 130-133.

共引文献43

同被引文献22

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部