期刊文献+

基于贝叶斯压缩感知的自适应测量算法 被引量:2

Adaptive measurement algorithm based on Bayesian Compressive Sensing
下载PDF
导出
摘要 针对传统压缩感知理论无法实现自适应压缩测量的不足,介绍了基于贝叶斯估计的压缩感知重构算法;建立了基于重构信号微分熵的自适应评价指标;构建了基于分块测量方式的自适应压缩测量算法。仿真分析了该算法用于随机阶跃信号的测量效果,实验结果表明:建立的自适应评价指标与被测信号重构误差具有相似的变化趋势,能有效反映随机测量进程,可以实现自适应压缩测量。正是在BCS理论的基础上,提出了一种根据以获取信息的不确定度,进而自适应实现压缩测量的算法,该算法运算简单,适用于实时信号的在线压缩测量。 To overcome the challenge of traditional Compressive Sensing without adaptive measurement ability, the theory of Bayesian Compressive Sensing is briefly introduced. An evaluation index based on differential entropy of estimated signal is devised and the adaptive compressive measurement procedure without any prior information about the measured signals is presented in block manner. Numerical simulations on random step signal verify that the adaptive algorithm has good performance. This algorithm offers great potential for adaptive compressive measuring.
作者 郭鹏
出处 《计算机工程与应用》 CSCD 2013年第9期200-202,217,共4页 Computer Engineering and Applications
关键词 压缩感知 贝叶斯估计 自适应测量 微分熵 重构误差 Compressive Sensing(CS) Bayesian estimation adaptive measurement differential entropy reconstruction error
分类号 O810 [理学]
  • 相关文献

参考文献8

  • 1Cand6s E,Romberg J, Tao T.Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory, 2006,52(2) :489-509.
  • 2Donoho D L.Compressed sensing[J].IEEE Transactions on Information Theory,2006,52(4) : 1289-1306.
  • 3Cand6s E, Wakin M.An introduction to compressive sam- piing a sensing/sampling paradigm that goes against the common knowledge in data acquisition[J].IEEE Signal Processing Magazine, 2008,25 (2) : 21-30.
  • 4Haupt J, Nowak R, Castro R.Adaptive sensing for sparse signal recovery[C]//Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, Marco Island,FL, 2009: 702-707.
  • 5Averbuch A, Shai D, Shay D.Adaptive compressed image sensing using dictionaries[J].SIAM Journal of Imaging Sci- ences, 2012,5.
  • 6Ji Shihao,Xue Ya,Carin L.Bayesian compressive sensing[J]. IEEE Transactions on Signal Processing, 2008, 56 (6): 2346-2356.
  • 7Ji S, Dunson D, Carin L.Multitask compressive sensing[J]. IEEE Transactions on Signal Processing,2009,57(1) : 92-106.
  • 8方红,王年,章权兵,韦穗.基于稀疏贝叶斯学习的图像重建方法[J].中国图象图形学报,2009,14(6):1064-1069. 被引量:10

二级参考文献12

  • 1Donoho D. Compressed sensing[ J]. IEEE Transactions Information Theory, 2006,52 ( 4 ) : 1289-1306.
  • 2Candes E J, Romberg J, Tao T. Signal recovery from incomplete and inaccurate measurements [ J ]. Communications on Pure and Applied Mathematics, 2005,59 ( 8 ) : 1207-1223.
  • 3Donoho D, Huo X. Uncertainty principles and ideal atomic decompositions[J]. IEEE Transactions on Information Theory, 2001,47 ( 7 ) :2845-2862.
  • 4Donoho D, Elad M. Maximal sparsity representation via 11 minimization [J]. Proceedings of the National Academy of Science, 2003,100(5 ) :2197-2202.
  • 5Candes E J, Tan T. Decoding by linear programming [ J ]. IEEE Transactions on Information Theory, 2005, 51(12) :4203-4215.
  • 6Tropp J, Gilbert A. Signal recovery from partial information via orthogonal matching pursuit [ J ]. IEEE Transactions on Information Theory, 2007, 53( 12): 4566-4666.
  • 7Tipping M. The relevance vector machine [ A]. In: Solla S A, Leen T K, Muller K-R. Advances in Neural Information Processing Systems 12[ C], Cambridge, MA,USA:MIT Press, 2000: 652-658.
  • 8Figueiredo M. Adaptive sparseness for supervised learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(9) : 1150-1159.
  • 9Vapnik V N. The Nature of Statistical Learning Theory[ M ]. New York: Springer2Verlag, 1995.
  • 10Bernardo J M, Smith A F M. Bayesian Theory[ M]. Wiley,1994.

共引文献9

同被引文献19

  • 1T Counts, C Gurbuz. W R Scott. Multistatic ground penetra-ting radar experiments [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2007,45 ( 8 ) : 2544 - 2553.
  • 2D L Donoho. Compressed sensing [ J ]. IEEE Transac- tionson Information Theory, 2006, 52 ( 4 ) : 1289 - 1306.
  • 3S Ji, Y Xue, L Carin. Bayesian compressive sensing [J]. IEEE Transactions on Signal Processing, 2008, 56 ( 6 ) :2346 - 2356.
  • 4D L Donoho, M A Saunders. Atomic decomposition by basis pursuit [J]. SIAM Journal on Scientific Com- puting, 1998,20( 1 ) :33 -61.
  • 5V N Vapnik. Statistical learning theory [M]. Wiley, 1998.
  • 6S D Babacan, R Monila. Bayesian compressive sensing using Laplace priors[J]. IEEE Transactions on Image Processing ,2010,19 ( 1 ) :53 - 63.
  • 7C Cortes, N Vapnik. Support vector networks[J]. Machine Learning, 1995,20 ( 3 ) :273 - 297.
  • 8M E Tipping, A C Faul. Fast marginal likelihood maximization for sparse Bayesian models [ C ]. Pro- ceedings of the Ninth International Work-shop onArti- ficial Intelligence and Statistics. Key West, FL,2003.
  • 9J A Tropp, A C Gilbert. Signal recovery from ran- dommeasurements via orthogonal matching pursuit[J].IEEE Transactions on Information Theory ,2007, 53(12) :4655 -4666.
  • 10Candes E J, Romberg J, Tao T. Robust uncer-talnty principles:exact signal reconstruction from highly in- complete frequency information [J].IEEE Transac- tions on Information Theory, 2006,52 (2) : 489 - 509.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部