期刊文献+

基于初始聚类中心优化和维间加权的改进K-means算法 被引量:7

An Improved K-means Algorithm Based on Initial Clustering Center Optimization and Weighted Between Dimension
下载PDF
导出
摘要 针对K-means算法易受随机选择的初始聚类中心的影响和划分准确率不高的缺点,给出了一种改进的K-means算法。首先对初始聚类中心的选择过程进行了改进,然后对各样本点间差异最大的维进行加权处理。在Iris数据集上对原始算法和改进后的K-means算法的聚类结果进行对比分析。实验证明:改进后的算法稳定,且聚类的准确率达到了92%。 K-means algorithm is a commonly used clustering algorithm based on partition, for k-means algorithm is vulnerable to random selection of initial cluster centers and the division accuracy is not high, so this paper gives an improved k -means algorithm. First, the choice of initial cluster centers has improved, and the various dimensions of the sample points were weighted. The results on Iris data set used the original algorithm and improved algorithm for k-means clustering are compared and analyzed, and experiments show that the improved clustering algorithm is stable and the accuracy rate is 92%.
出处 《重庆理工大学学报(自然科学)》 CAS 2013年第4期77-80,共4页 Journal of Chongqing University of Technology:Natural Science
关键词 聚类 K—means算法 初始聚类中心 维间加权 Iris数据集 clustering k-means algorithm initial cluster centers weighted between the dimension Iris data set
  • 相关文献

参考文献10

二级参考文献69

共引文献270

同被引文献59

  • 1杨善林,李永森,胡笑旋,潘若愚.K-MEANS算法中的K值优化问题研究[J].系统工程理论与实践,2006,26(2):97-101. 被引量:191
  • 2方旭明,戚彩霞,向征.IEEE 802系列无线网络网状组网与移动切换技术综述[J].计算机应用,2006,26(8):1756-1761. 被引量:12
  • 3van der M L J P,Postma E O,van den Herik H J.Dimensionality reduction:A comparative review[J].Journal of Machine Learning Research,2007 (1).
  • 4Tenenbaum J B,de S V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,290,2000:2319-2323.
  • 5Roweis S T,Saul L K.Nonlinear dimensionality reduction by loeally linear embedding[J].Science,2000,290:2323-2326.
  • 6Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(1):1373-1396.
  • 7Brans M M.Charting a manifold[C] // Neural Information Proceeding Systems:Natural and Synthetic.Vancouver,Canada,2000:232-245.
  • 8Zhang Zhen-yue,Zha Hong-yuan.Linear low-rank approximations and nonlinear dimensionnlity reduction[J].Science in Chins Series A-Mathematics,2005,35 (3):273-285.
  • 9Yan S C,Xu D,Zhang B,et al.Graph embedding and extensions:A general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 (1):40-51.
  • 10Zhu Xiao-jin,Ghahrsmani Z.Learning from labeled and unlabeled data with label propagation[R].Technical Report 02-107,CMU-CALD.USA:Carnegie Mellon University,2002.

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部