期刊文献+

陶瓷纤维混凝土的抗冲击性能试验研究 被引量:9

Experimental Study on Anti-impact Performance of Ceramic Fiber Reinforced Concrete
下载PDF
导出
摘要 采用100分离式霍普金森压杆(SHPB)试验装置,研究了不同纤维掺量(体积分数,下同)的陶瓷纤维混凝土(CRFRC)冲击压缩特性.采用厚度为1mm,不同直径的H62黄铜波形整形器对入射波进行整形,确保了试验过程中的应力均匀性,实现了恒应变率加载.结果表明:随着纤维掺量的增加,CRFRC的峰值应力和峰值应变明显增加,应力应变曲线下降段由缓变陡;冲击压缩强度和能量吸收特性较素混凝土显著提高,当应变率为(74±2)s-1时,纤维掺量为0.3%的CRFRC能量吸收率明显高于素混凝土.另外,拟合了动态强度增长因子随应变率对数变化的关系式. The impact compressive properties of concrete reinforced with various volume fractions of ceram ic fiber were studied using 100mmdiameter split Hopkins0n pressure bar(SHPB) apparatus. H62 brass pulse shapers of 1 mm thick and different diameter were adopted to ameliorate the incident wave so as to obtain dynamic stress equilibrium and a nearly constant strain rate over most of the test duration. The tests reveal that with the volume fraction of ceramic fiber increasing, the peak stress and peak strain en hance prominently and the descending segment of stressstrain curves turn steep. The addition of short ce ramie fiber can significantly improve "the impact compressive strength and energyabsorption capacity of the concrete and the relationship between dynamic strength increase ratio and the logarithm of strain rate can be expressed by double linear approximations. When the strain rate is(74t2) s1 , the energy absorption rate of concrete reinforced by ceramic fiber of volume fraction of 0.3% is superior to plain concrete remarkably.
出处 《建筑材料学报》 EI CAS CSCD 北大核心 2013年第2期237-243,共7页 Journal of Building Materials
基金 国家自然科学基金资助项目(51078350) 陕西省自然科学基金资助项目(SJ08E210)
关键词 陶瓷纤维混凝土 动态强度增长因子 过渡应变率 比能量吸收 ceramic fiber reinforced concrete (CRFRC) dynamic strength increase ratio transient stainrate specific energy absorption(SEA)
  • 相关文献

参考文献3

二级参考文献21

  • 1崔毅华.玄武岩连续纤维的基本特性[J].纺织学报,2005,26(5):120-121. 被引量:109
  • 2刘飞,赵凯,王肖钧,任辉启.软材料和松散材料SHPB冲击压缩实验方法研究[J].实验力学,2007,22(1):20-26. 被引量:14
  • 3国家水泥混凝土制品质量监督检验中心.连续玄武岩纤维混凝土性能试验检测报告,(委)字纤维类(2006)第20号[R].苏州,2006:1-2.
  • 4Dias D P, Thaumaturgo C. Fracture toughness of geopolymeric concretes reinforced with basalt fibers [J]. Cement and Concrete Composites, 2005, 27: 49-54.
  • 5Zielinski K, Olszewski P. The impact of basaltic fibre on selected physical and mechanical properties of cement mortar [J]. Concrete Precasting Plant and Technology, 2005, 71(3): 28-33.
  • 6Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar [J]. Experimental Mechanics, 2002, 42(1): 93-106.
  • 7Li X B, Lok T S, Zhao J, Zhao P J. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress strain curves for rocks [J]. International Journal of Rock Mechanics & Mining Sciences, 2000, 37: 1055-1060.
  • 8Zhou Z L, Li X B, Zuo Y J, Hong L. Fracture characteristics of rock fragmentation at strain rate of 10^0-10^2 s^-1 [J]. J Cent South Univ Technol, 2006, 13(3): 290-294.
  • 9Song B, Chen W, Lu W Y. Mechanical characterization at intermediate strain rates for rate effects on an epoxy syntactic foam [J/OL]. International Journal of Mechanical Sciences, doi:10. 1016/j, ijmecsci. 2007. 04. 003.
  • 10Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing ceramics in a split Hopkinson pressure bar [J]. J Am Ceram Soc, 1994, 77(1): 263-267.

共引文献89

同被引文献115

引证文献9

二级引证文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部